精英家教网 > 高中数学 > 题目详情
椭圆的两焦点是,则其焦距长为            ,若点是椭圆上一点,且 是直角三角形,则的大小是            .
 ,  

试题分析:易知,所以焦距长为
因为b>c,所以要满足 是直角三角形,应该是∠ 是直角,不妨设点P在第一象限,则点P的坐标为,所以
点评:椭圆,点是椭圆上一点,若b>c,满足 是直角三角形的点P有四4;若b=c,满足 是直角三角形的点P有6个;若b<c,满足 是直角三角形的点P有8个。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

设AB是椭圆的长轴,点C在上,且,若AB=4,,则的两个焦点之间的距离为________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的左焦点为F,右顶点为A,以FA为直径的圆经过椭圆的上顶点,则椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动点到两定点的距离和为8,且,线段的的中点为,过点的所有直线与点的轨迹相交而形成的线段中,长度为整数的有
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知是长轴为的椭圆上三点,点是长轴的一个顶点,过椭圆中心,且.

(1)建立适当的坐标系,求椭圆方程;
(2)如果椭圆上两点使直线轴围成底边在轴上的等腰三角形,是否总存在实数使?请给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
已知椭圆过点,且离心率为.
(1)求椭圆的方程;
(2)为椭圆的左右顶点,点是椭圆上异于的动点,直线分别交直线两点.  
证明:以线段为直径的圆恒过轴上的定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的右焦点F2作倾斜角为弦AB,则|AB︳为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的长轴长为10,离心率,则椭圆的方程是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本题满分14分)
已知椭圆=1(a>b>0)的左右顶点为,上下顶点为, 左右焦点为,若为等腰直角三角形(1)求椭圆的离心率(2)若的面积为6,求椭圆的方程

查看答案和解析>>

同步练习册答案