精英家教网 > 高中数学 > 题目详情
已知数列{an}满足a1=2,an+1=2an+(n-2)(n-1)(n∈N*
(1)是否存在常数p,q,r,使数列{an+pn2+qn+r}是等比数列,若存在求出p,q,r的值;若不存在,说明理由;
(2)设数列{bn}满足bn=
1
2n+1-an
,证明:b1+b2+…+bn
3
2
分析:(1)假设存在,利用等比的性质建立方程,根据同一性求参数的值,若求出说明存在,否则说明不存在;
(2)由(1)求出数列{an}表达式,代入求出数列{bn}的通项,利用放大法得到bn
1
n-1
-
1
n
(n≥2)
代入不等式左边化简整理证得结论.
解答:解:(1)设an+1+p(n+1)2+q(n+1)+r=2(an+pn2+qn+r)
∴an+1=2an+pn2+(q-2p)n+r-p-q
由an+1=2an+n2-3n+2∴p=1,q=-1,r=2.4分
∴{an+n2-n+2}是以首项为4,公比为2的等比数列.6分
(2)∵an+n2-n+2=4•2n-1=2n+17′
bn=
1
2n+1-an
=
1
n2-n+2
1
n2-n
=
1
(n-1)n
=
1
n-1
-
1
n
(n≥2)
9分
∴n=1时,b1=
1
2
3
2
10′n≥2时,b1+b2+b3++bn=b1+(
1
1
-
1
2
+
1
2
-
1
3
++
1
n-1
-
1
n
)
=
1
2
+1-
1
n
3
2

综上:b1+b2+b3++bn
3
2
(n∈N*)
12分
点评:本题考查等比关系的确定,以及利用放缩法证明与数列有关的不等式,是数列与不等式综合的题目,证明过程中放缩法的技巧要注意体会,在证明不等式时,经常根据题设中的条件恰当进放大或缩小,以达到证明的目的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若数列{bn}满足:bn=
1
an-
1
2
(n∈N*)
,试证明数列bn-1是等比数列;
(2)求数列{anbn}的前n项和Sn
(3)数列{an-bn}是否存在最大项,如果存在求出,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
则{an}的通项公式
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求数列{an}的通项公式;
(2)证明:对于一切正整数n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k项的和S3k(用k,a表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)已知数列{an}满足an+1=an+2,且a1=1,那么它的通项公式an等于
2n-1
2n-1

查看答案和解析>>

同步练习册答案