精英家教网 > 高中数学 > 题目详情
已知命题p:函数f(x)=x3-mx2+1在[1,2]单调递减,命题q:任意x∈R,使得x2+(m-1)x-
m-3
4
>0
若“¬p且¬q”为真,求实数m的取值范围.
对于p:∵命题p:函数f(x)=x3-mx2+1在[1,2]单调递减,
∴f'(x)=3x2-2mx≤0在x∈[1,2]恒成立,
m≥
3
2
x
在x∈[1,2]恒成立,
3
2
x
在x∈[1,2]的最大值是3,
∴m≥3.①…(3分)
对于q:∵任意x∈R,使得x2+(m-1)x-
m-3
4
>0

∴△=(m-1)2+m-3<0⇒m2-m-2<0⇒-1<m<2.②…(6分)
∵“?p且?q”为真,∴p假q假,…(8分)
m<3
m≤-1,或m≥2
,即m≤-1或2≤m<3.
由①②知m的取值范围为:{m|m≤-1或2≤m<3}.…(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

下列命题:
①命题“事件A与B互斥”是“事件A与B对立”的必要不充分条件.
②“am2<bm2”是“a<b”的充分必要条件.
③“矩形的两条对角线相等”的否命题为假.
④在△ABC中,“∠B=60°”是∠A,∠B,∠C三个角成等差数列的充要条件.
⑤△ABC中,若sinA=cosB,则△ABC为直角三角形.
判断错误的有______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知c>0,设命题p:指数函数y=-(2c-1)x在实数集R上为增函数,命题q:不等式x+(x-2c)2>1在R上恒成立.若命题p或q是真命题,p且q是假命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=logm
1+x
x-1
(其中m>0且m≠1).
(1)判断函数f(x)的奇偶性,并加以证明;
(2)当0<m<1时,判断函数f(x)在区间(1,+∞)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从平面外一点向平面引一条垂线和三条斜线,若这些斜线与平面成等角,则如下四个命题中:
①三斜足构成正三角形;
②垂足是斜足三角形的内心;
③垂足是斜足三角形的外心;
④垂足是斜足三角形的垂心.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列有关命题的说法正确的有(  )
①命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”;
②“x=1”是“x2-3x+2=0”的充分不必要条件;
③若p∧q为假命题,则p、q均为假命题;
④若“p∨q”为假命题,则“?p∧?q”为真命题.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列结论:
①若命题p:?x∈R,tanx=1,命题q:?x∈R,x2-x+1>0,则命题“p∧q“是假命题 
②a+b>0成立的必要条件是a>0,b>0 
③若点O和点F分别为椭圆
x2
4
+
y2
3
=1
的中心和左焦点,点P为椭圆上任一点,则
OP
FP
的最大值为6 
④五进制的数412化为十进制的数为106 
⑤已知函数f(x)在(-∞,+∞)为增函数,a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.
则其中正确结论的序号为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设命题p:函数f(x)=lg(ax2-x+
1
16
a)的定义域为R;命题q:3x-9x<a对一切的实数均成立,如果命题“p或q”为真命题,且“p且q”为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给定下列命题:
①“x>1”是“x>2”的充分不必要条件;
②“若sinα≠
1
2
,则α≠
π
6
”;
③若xy=0,则x=0且y=0”的逆否命题;
④命题“?x0∈R,使x02-x0+1≤0”的否定.
其中真命题的序号是______.

查看答案和解析>>

同步练习册答案