精英家教网 > 高中数学 > 题目详情
10.一元二次函数图象经过点(-1,6),(1,2)(3,6),求此函数的解析式.

分析 利用待定系数法设f(x)=ax2+bx+c,建立方程组关系进行求解即可.

解答 解:设函数f(x)=ax2+bx+c,
∵一元二次函数图象经过点(-1,6),(1,2)(3,6),
∴$\left\{\begin{array}{l}{a-b+c=6}\\{a+b+c=4}\\{9a+3b+c=6}\end{array}\right.$,解得a=$\frac{1}{2}$,b=-1,c=$\frac{9}{2}$,
即f(x)=$\frac{1}{2}$x2-x+$\frac{9}{2}$.

点评 本题主要考查函数解析式的求解,利用待定系数法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.计算下列各式:
①log2$\frac{1}{8}$ ②$(\frac{16}{9})^{-\frac{3}{2}}$ ③sin600° ④cos(-1020°)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求与椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1有共同焦点且过点(3,$\sqrt{2}$)的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若公比不为1的等比数列{an}满足log2(a1•a2…a13)=13,等差数列{bn}满足b7=a7,则b1+b2…+b13的值为26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数y=f(x)的定义域为(0,+∞),当x>1时,f(x)<0,且对任意的x,y∈R,恒有f(xy)=f(x)+f(y),则不等式f(x)+f(x-2)≥f(8)的解集为(  )
A.(2,4]B.[-2,4]C.[4,+∞)D.(-∞,-2]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.圆心在直线2x+y=0上的圆C与x轴正半轴相切,且在直线4x-3y-5=0上截得的弦长为2$\sqrt{3}$,则圆C的标准方程为(x-1)2+(y+2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.二次函数y=(x+2)2-1的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=Asin(ωx+φ)(A>0,|φ|<$\frac{π}{2}$)的一段图象如图所示,求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知a满足方程x+1gx=4,b满足方程x+10x=4,函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+(a+b)x+2,x≤0}\\{2,x>0}\end{array}\right.$,则关于x的方程f(x)=x的解是-2,-1,2.

查看答案和解析>>

同步练习册答案