精英家教网 > 高中数学 > 题目详情
学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为
1
4
,不堵车的概率为
3
4
;汽车走公路②堵车的概率为p,不堵车的概率为1-p,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(I)若三辆车中恰有一辆车被堵的概率为
7
16
,求走公路②堵车的概率;
(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数为2的概率.
分析:(I)三辆车是否堵车相互之间没有影响三辆汽车中恰有一辆汽车被堵,是一个独立重复试验,走公路②堵车的概率为p,不堵车的概率为1-p,根据独立重复试验的概率公式写出关于P的方程,解出P的值,得到结果;
(Ⅱ)恰有两辆车辆被堵可分为:甲、乙堵车或丙堵车,甲、乙有一辆堵车.
解答:解:(I)由已知条件,三辆车是否堵车相互之间没有影响,三辆汽车中恰有一辆汽车被堵,是一个独立重复试验,走公路②堵车的概率为p,不堵车的概率为1-p,得
C
1
2
×
1
4
×
3
4
×(1-p)+(
3
4
)2p=
7
16
,即3p=1,则p的值为
1
3
.     
(Ⅱ)恰有两辆车辆被堵可分为:甲、乙堵车或丙堵车,甲、乙有一辆堵车,
∴恰有两辆车辆被堵的概率为P=
1
4
×
1
4
×
2
3
+
C
1
2
×
1
4
×
3
4
×
1
3
=
1
6
点评:本题考查相互独立事件同时发生的概率,考查利用概率知识解决实际问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源:2012年四川省成都市石室中学高考数学三模试卷(文科)(解析版) 题型:解答题

学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为p,不堵车的概率为1-p,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响.
(I)若三辆车中恰有一辆车被堵的概率为,求走公路②堵车的概率;
(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数为2的概率.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年四川省成都市模拟考试理科数学试卷(解析版) 题型:解答题

学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数的分布列和数学期望。

【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得

第二问中可能的取值为0,1,2,3  ,       

 , 

从而得到分布列和期望值

解:(I)由已知条件得 ,即,则的值为

 (Ⅱ)可能的取值为0,1,2,3  ,       

 , 

   的分布列为:(1分)

 

0

1

2

3

 

 

 

 

所以 

 

查看答案和解析>>

同步练习册答案