精英家教网 > 高中数学 > 题目详情

【题目】定义在[﹣1,1]上的奇函数f(x)满足当0<x≤1时,f(x)=
(1)求f(x)在[﹣1,1]上的解析式;
(2)判断并证明f(x)在[﹣1,0)上的单调性;
(3)当x∈(0,1]时,方程 ﹣2x﹣m=0有解,试求实数m的取值范围.

【答案】
(1)解:设x∈[﹣1,0),则﹣x∈(0,1],

f(﹣x)= =

∵f(x)是奇函数,

∴f(﹣x)=﹣f(x),

∴f(x)=﹣

∴f(x)=


(2)解:设﹣1<x1﹣x2<0,

∴f(x1)﹣f(x2)=﹣ + =

∵x1<x2,∴ <0,﹣2<x1+x2<0,

﹣1<0,

∴f(x1)﹣f(x2)>0,

∴f(x)在[﹣1,0)递减


(3)解:方程 ﹣2x﹣m=0有解,

即m=4x+1﹣2x在(0,1]上有解,

令2x=t,t∈(1,2],

t2﹣t+1∈(1,3],

∴m∈(1,3]


【解析】1、本题考查的是函数奇偶性的应用以及解析式的求法。
2、本题考查的是用定义证明函数的单调性。
3、本题考查的是复合函数根的存在情况。
【考点精析】本题主要考查了函数单调性的判断方法的相关知识点,需要掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列函数在其定义域上既是奇函数又是减函数的是(
A.f(x)=2x
B.f(x)=xsinx
C.
D.f(x)=﹣x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x|x﹣a|+x.
(1)当a=3时,求函数f(x)的单调递增区间;
(2)求所有的实数a,使得对任意x∈[1,4],函数f(x)的图象恒在函数g(x)=x+4图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R的函数f(x)满足以下条件:
①对任意实数x,y恒有f(x+y)=f(x)f(y)+f(x)+f(y);
②当x>0时,f(x)>0;
③f(1)=1.
(1)求f(2),f(0)的值;
(2)若f(2x)﹣a≥af(x)﹣5对任意x恒成立,求a的取值范围;
(3)求不等式 的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,函数f(x)=x2(x﹣a).
(1)若函数f(x)在区间 内是减函数,求实数a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设D是函数y=f(x)定义域内的一个子区间,若存在x0∈D,使f(x0)=﹣x0 , 则称x0是f(x)的一个“开心点”,也称f(x)在区间D上存在开心点.若函数f(x)=ax2﹣2x﹣2a﹣ 在区间[﹣3,﹣ ]上存在开心点,则实数a的取值范围是(
A.(﹣∞,0)
B.[﹣ ,0]
C.[﹣ ,0]
D.[﹣ ,﹣ ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的奇函数,若f(x)= ,则关于x的方程f(x)+a=0(0<a<1)的所有根之和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中,正确的是( )
A.奇函数的图象一定过原点
B.y=x2+1(﹣4<x≤4)是偶函数
C.y=|x+1|﹣|x﹣1|是奇函数
D.y=x+1是奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断中正确的是( )
A. 是偶函数
B. 是奇函数
C. 是偶函数
D. 是奇函数

查看答案和解析>>

同步练习册答案