精英家教网 > 高中数学 > 题目详情

设抛物线的顶点在原点,准线方程为,则抛物线的标准方程是______________。

解析试题分析:令抛物线的方程为,则,解得,所以
考点:抛物线的方程
点评:求抛物线的方程,需结合准线或者焦点设相应的方程,然后求解。抛物线的方程有四种形式,需熟悉。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知双曲线的离心率为,顶点与椭圆的焦点相同,那么该双曲线的焦点坐标为         ,渐近线方程为              .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知抛物线的准线过双曲线的右焦点,则双曲线的离心率为       

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知△ABC的顶点B、C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是            

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知双曲线与抛物线有一个公共的焦点,且两曲线的一个交点为,若,则双曲线的渐近线方程为               .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

对于曲线,给出下面四个命题:
①曲线不可能表示椭圆;   ②当时,曲线表示椭圆;
③若曲线表示双曲线,则
④若曲线表示焦点在轴上的椭圆,则
其中所有正确命题的序号为__    _ __

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

关于直线的对称点的坐标为      

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知过抛物线的焦点且斜率为的直线与抛物线交于两点,且,则                   .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设F1,F2是双曲线C, (a>0,b>0)的两个焦点。若在C上存在一点P。使PF1⊥PF2,且∠PF1F2=30°,则C的离心率为________________.

查看答案和解析>>

同步练习册答案