【题目】已知函数f(x)=4alnx﹣3x,且不等式f(x+1)≥4ax﹣3ex,在(0,+∞)上恒成立,则实数a的取值范围( )
A.
B.
C.(﹣∞,0)D.(﹣∞,0]
科目:高中数学 来源: 题型:
【题目】已知a∈R,函数f(x)=(-x2+ax)ex(x∈R).
(1)当a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
x2-(a+1)x+alnx+1
(Ⅰ)若x=3是f(x)的极值点,求f(x)的极大值;
(Ⅱ)求a的范围,使得f(x)≥1恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系
中,点
,直线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为![]()
,直线
与曲线
相交于
,
两点.
(1)求曲线
与直线
交点的极坐标(
,
);
(2)若
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.下列命题为真命题的是( )
A.函数
是周期函数B.函数
既有最大值又有最小值
C.函数
的定义域是
,且其图象有对称轴D.对于任意
,
单调递减
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正方体有8个不同顶点,现任意选择其中4个不同顶点,然后将它们两两相连,可组成平面图形成空间几何体.在组成的空间几何体中,可以是下列空间几何体中的________.(写出所有正确结论的编号)
①每个面都是直角三角形的四面体;
②每个面都是等边三角形的四面体;
③每个面都是全等的直角三角形的四面体;
④有三个面为等腰直角三角形,有一个面为等边三角形的四面体.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知平面直角坐标系
,直线
过点
,且倾斜角为
,以
为极点,
轴的非负半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)求直线
的参数方程和圆
的标准方程;
(2)设直线
与圆
交于
、
两点,若
,求直线
的倾斜角
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“更相减损术”是《九章算术》中介绍的一种用于求两个正整数的最大公约数的方法,该方法的算法流程如图所示,根据程序框图计算,当a=35,b=28时,该程序框图运行的结果是( )
![]()
A.a=6,b=7B.a=7,b=7C.a=7,b=6D.a=8,b=8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com