精英家教网 > 高中数学 > 题目详情
已知 p:f(x)=
1-x
3
,且|f(a)|<2;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅.
若p∨q为真命题,p∧q为假命题,求实数a的取值范围.
对p:所以|f (a)|=|
1-a
3
|<2

若命题p为真,则有-5<a<7;
对q:∵B={x|x>0}且 A∩B=∅
∴若命题q为真,则方程g(x)=x2+(a+2)x+1=0无解或只有非正根.
∴△=(a+2)2-4<0或
△≥0
g(0)≥0
-
a+2
2
<0
,∴a>-4.
∵p,q中有且只有一个为真命题
∴(1)p 真,q假:则有
-5<a<7
a≤-4
,即有-5<a≤-4

(2)p 假,q 真:则有
a≥7或a≤-5
a>-4
,即有a≥7

∴-5<a≤-4或a≥7.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知p:f'(x)是f(x)=
13
x3-x2-35x+7
的导函数,且f'(a)<0;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={ x|x>0},且A∩B=∅.求实数a的取值范围,使“p或q”为真命题,“p且q”为假命题.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:f(x)=
1-x3
,且|f(a)|<2,q:集合A={x|x2+(a+2)x+1=0,x∈R},且A≠∅.若p或q为真命题,p且q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知 p:f(x)=
1-x3
,且|f(a)|<2;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅.
若p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北省黄冈市黄州一中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知 p:f(x)=,且|f(a)|<2;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅.
若p∨q为真命题,p∧q为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省衡阳八中高三(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

已知p:f'(x)是的导函数,且f'(a)<0;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={ x|x>0},且A∩B=∅.求实数a的取值范围,使“p或q”为真命题,“p且q”为假命题.

查看答案和解析>>

同步练习册答案