精英家教网 > 高中数学 > 题目详情
(2004•宁波模拟)(文) {an}是等差数列,公差d>0,Sn是{an}的前n项和.已知a1a4=22.S4=26.
(1)求数列{an}的通项公式an
(2)令bn=
1anan+1
,求数列{bn}前n项和Tn
分析:(1)利用等差数列的前n项和公式与通项公式得到两个关于a1,a4,的方程,求出a1,a4,同乘公差,然后求数列{an}的通项公式an
(2)通过bn=
1
anan+1
,求出
1
anan+1
= (
1
an
-
1
an+1
)•
1
3
,利用求数列{bn}前n项和Tn展开裂项,求出前n项和即可.
解答:解:(1)因为S4=
4(a1+a2)
2
=2(a1+a4)=26,得a1+a4=13  ①
又a1•a4=22  ②
由①得a4=13-a1 代入②得a1(13-a1)=22
解得a1=11或a1=2
a1=11时,a4=2,d<0不合题意,舍去
所以a1=2,a4=2+3d=11
d=3
所以an=2+3(n-1)=3n-1
(2)bn=
1
anan+1

Tn=
1
a1a2
1
a2a3
 +
1
a3a4
+…+ 
1
anan+1

因为
1
anan+1
= (
1
an
1
an+1
)(
1
an+1-an
)

因为an+1-an=d
所以
1
anan+1
= (
1
an
-
1
an+1
)•
1
3

Tn=
1
3
[
1
a1
-
1
a2
+
1
a2
-
1
a3
+ …+
1
an
-
1
an+1
]
=
1
3
×[
1
a1
-
1
an+1
]

=
1
3
×[
1
2
-
1
3n+2
]

=
n
6n+4

所以Tn=
n
6n+4
点评:本题是中档题,考查等差数列的通项公式的应用,第二小题主要的方法是裂项求和以及前n项和的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2004•宁波模拟)(文)下列区间中,使函数y=sin(x+
π
4
)
为增函数的区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•宁波模拟)(理)如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD将△BCD折起,使点C移到点C',且C'在平面ABD的射影O恰好在AB上.
(1)求证:BC'⊥面ADC';
(2)求二面角A-BC'-D的大小;
(3)求直线AB和平面BC'D所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•宁波模拟)已知sinθ=-
3
5
(3π<θ<
7
2
π)
,则tan
θ
2
=
-3
-3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•宁波模拟)已知集合A={y|y=x+8,x∈R},B={y|y=x2-x,x∈R},则A∩B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2004•宁波模拟)数列{an}为等差数列是数列{2an}为等比数列的(  )

查看答案和解析>>

同步练习册答案