精英家教网 > 高中数学 > 题目详情
关于函数f(x)=2sin(3x-
3
4
π)
,有下列命题
①其最小正周期为
2
3
π

②其图象由y=2sin3x向右平移
π
4
个单位而得到;
③其表达式写成f(x)=2cos(3x+
3
4
π)

④在x∈[
π
12
5
12
π]
为单调递增函数;
则其中真命题为
 
分析:①根据周期公式和解析式求出,②由图象变换法则“左加右减”求出平移后的解析式,③利用诱导公式实现正弦函数和余弦函数的转化,④由函数的定义域求出整体“3x-
3
4
π
”的范围,再由正弦函数的单调性进行判断.
解答:解:①由ω=3知函数的周期是
3
,故①正确;
②由y=2sin3x的图象向右平移
π
4
,得到函数y=2sin3(x-
π
4
)=2sin(3x-
3
4
π)
的图象,故②正确;
③因f(x)=2sin(3x-
3
4
π)
=2sin[(3x+
3
4
π)-
2
]
=2cos(3x+
3
4
π)
,故③正确;
④由x∈[
π
12
5
12
π]
得,-
π
2
≤3x-
3
4
π≤
π
2
,故函数在[
π
12
5
12
π]
上递增,故④正确.
故答案为:①②③④.
点评:本题考查了复合三角函数的性质问题,即函数的周期性、函数图象变换、诱导公式的利用和整体思想,主要利用正弦(余弦)函数的性质来判断.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a,b∈R,a*b=b*a;
(2)对任意a∈R,a*0=a;
(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数f(x)=(2x)*
1
2x
的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(-∞,-
1
2
),(
1
2
,+∞)

其中所有正确说法的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2,x>k
x2+4x+2,x≤k
,若关于x的方程f(x)=x恰有三个不同的实根,则k的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,对于任意给定的a,b∈R,a*b为唯一确定的实数,且具有性质;
(1)对任意a,b∈R,a*b=b*a;
(2)对任意a∈R,a*0=a;
(3)对任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
关于函数f(x)=(3x)*(
1
3x
)
的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为奇函数;
③函数f(x)的单调递增区间为(-∞,-
1
3
),(
1
3
,+∞)

其中所有正确说法的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=2|x+
1
x
|
,下列命题判断错误的是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于函数f(x)=2|x+
1
x
|
,下列命题判断错误的是(  )
A.图象关于原点成中心对称
B.值域为[4,+∞)
C.在(-∞,-1]上是减函数
D.在(0,1]上是减函数

查看答案和解析>>

同步练习册答案