精英家教网 > 高中数学 > 题目详情
12.f(x)是定义域上的增函数,且f(x)>0,则下列函数为增函数的是(  )
A.y=1-f(x)B.$y=\frac{1}{f(x)}$C.y=f2(x)D.$y=-\sqrt{f(x)}$

分析 利用复合函数的单调性的判定方法即可得出.

解答 解:∵f(x)是定义域上的增函数,且f(x)>0,
∴y=1-f(x)为减函数,y=$\frac{1}{f(x)}$为减函数,y=f2(x)为增函数,y=-$\sqrt{f(x)}$为减函数.
故选:C.

点评 本题考查了复合函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若sin($\frac{π}{2}$+θ)=$\frac{3}{7}$,则cos2($\frac{π}{2}$-θ)=$\frac{40}{49}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线y+4=0与圆x2+y2-4x+2y-4=0的位置关系是(  )
A.相切B.相交,但直线不经过圆心
C.相离D.相交且直线经过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x,y满足约束条件$\left\{\begin{array}{l}x-y+4≥0\\ x+y≥0\\ x≤0\end{array}\right.$,在此可行域中随机选取x,y,则x+2y≤2的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=$\left\{\begin{array}{l}{kx+1,x≤0}\\{\frac{lnx}{x},x>0}\end{array}\right.$,则k>0时,F(x)=f(f(x))+2的零点个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=alnx-x2+1.
(Ⅰ)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若a<0,且对任意x1,x2∈(0,+∞),都有|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数y=f(x)的定义域是[0,4],则函数g(x)=$\frac{f(2x)}{x-1}$的定义域为(  )
A.[0,8]B.[0,1)∪(1,2]C.[0,2]D.[0,1)∪(1,8]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,且SE=2EB.
(1)证明:DE⊥平面SBC;
(2)证明:求二面角A-DE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤a}\\{x+2y≥1}\end{array}\right.$,若目标函数z=2x+6y的最小值为2,则a=(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案