精英家教网 > 高中数学 > 题目详情
12.如图,抛物线的方程为y2=2px(p>0),F为该抛物线的焦点,A是该抛物线的准线与x轴的交点,M是抛物线上一点,且满足MA⊥MF.
(1)若p=2,求该抛物线的焦点坐标及准线方程;
(2)当p值变化时,△MAF的面积是否存在最小值?若存在,求出最小值,若不存在,说明理由.

分析 (1)由抛物线的焦点坐标公式和准线方程,即可得到;
(2)设出M的坐标和A,F的坐标,由两直线垂直的条件:斜率之积为-1和两点的斜率公式,解方程求得m,再由三角形的面积公式计算即可判断是否存在最小值.

解答 解:(1)当p=2时,抛物线y2=4x的焦点为F(1,0),准线方程为x=-1;
(2)设M(m,n),由题意可得A(-$\frac{p}{2}$,0),F($\frac{p}{2}$,0),
由MA⊥MF,可得kMF•kMA=-1,
即$\frac{n}{m-\frac{p}{2}}$•$\frac{n}{m+\frac{p}{2}}$=-1,即有n2=$\frac{{p}^{2}}{4}$-m2
又n2=2pm,即有2pm=$\frac{{p}^{2}}{4}$-m2
解得m=($\frac{\sqrt{5}}{2}$-1)p(负的舍去),
S△MAF=$\frac{1}{2}$|AF|•|n|=$\frac{1}{2}$p$\sqrt{2pm}$=$\frac{1}{2}$$\sqrt{\sqrt{5}-2}$p2
该函数在(0,+∞)上为增函数,则△MAF的面积不存在最小值.

点评 本题考查抛物线的方程和性质,考查两直线垂直的条件:斜率之积为-1,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知2a=3b=6c,k∈Z,不等式$\frac{a+b}{c}$>k恒成立,则整数k的最大值为(  )
A.6B.5C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知正方体ABCD-A1B1C1D1
(1)点P是BD的中点.求证:C1P∥平面AB1D1
(2)若点Q是BD上的一个动点,C1Q与平面AB1D1 是否平行?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在正项等比数列{an}中,公比q∈(0,1),且a1a5+2a3a5+a2a8=25,2是a3与a5的等比中项,记bn=5-log2an
(1)求数列{bn}的通项公式;
(2)求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,3),则$\overrightarrow{a}•\overrightarrow{b}$=(  )
A.7B.8C.(3,5)D.(2,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,已知平面α∥平面β,AB与CD是两条异面直线且AB?α,CD?β,如果E、F、G分别是AC、CB、BD的中点.求证:平面EFG∥α∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知直线l1:3x+y-2=0与直线l2:mx-y+1=0的夹角为45°,则实数m=2或-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知F1,F2分别为椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,点P在椭圆上,△POF2是面积为$\sqrt{3}$的正三角形,则椭圆方程为$\frac{{x}^{2}}{4+2\sqrt{3}}$+$\frac{{y}^{2}}{2\sqrt{3}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知cos($\frac{π}{6}$-α)=$\frac{2}{3}$,则sin($\frac{2π}{3}$-α)=$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案