1£®ÏÂÃæÓÐÃüÌ⣺
¢Ùy=|sinx-$\frac{1}{2}$|µÄÖÜÆÚÊǦУ»
¢Úy=sinx+sin|x|µÄÖµÓòÊÇ[0£¬2]£»
¢Û·½³Ìcosx=lgxÓÐÈý½â£»
¢Ü¦ØÎªÕýʵÊý£¬y=2sin¦ØxÔÚ$[-\frac{¦Ð}{3}£¬\frac{2¦Ð}{3}]$ÉϵÝÔö£¬ÄÇô¦ØµÄȡֵ·¶Î§ÊÇ$£¨0£¬\frac{3}{4}]$£»  
¢ÝÔÚy=3sin£¨2x+$\frac{¦Ð}{4}$£©ÖУ¬Èôf£¨x1£©=f£¨x2£©=0£¬Ôòx1-x2±ØÎª¦ÐµÄÕûÊý±¶£»
¢ÞÈôA¡¢BÊÇÈñ½Ç¡÷ABCµÄÁ½¸öÄڽǣ¬ÔòµãP£¨cosB-sinA£¬sinB-cosAÔÚµÚ¶þÏóÏÞ£»
¢ßÔÚ¡÷ABCÖУ¬Èô$\overrightarrow{AB}•\overrightarrow{BC}£¾0$£¬Ôò¡÷ABC¶Û½ÇÈý½ÇÐΣ®ÆäÖÐÕæÃüÌâ¸öÊýΪ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®5

·ÖÎö ¢Ù£¬¡ßy=|sin£¨¦Øx-$\frac{1}{2}$|µÄÖÜÆÚÊÇ$\frac{¦Ð}{¦Ø}$£¬£»
¢Ú£¬µ±x¡Ý0ʱ£¬y=sinx+sin|x|=2sinxÖµÓò²»ÊÇ[0£¬2]£¬£»
¢Û£¬¡ßlg2¦Ð£¼1£¬lg4¦Ð£¾1£¬·½³Ìcosx=lgxÓÐÈý½â£¬ÕýÈ·£»
¢Ü£¬¦ØÎªÕýʵÊý£¬y=2sin¦ØxÔÚ$[-\frac{¦Ð}{3}£¬\frac{2¦Ð}{3}]$ÉϵÝÔö£¬ÓÉÌõ¼þÀûÓÃÕýÏÒº¯ÊýµÄµ¥µ÷ÐԿɵæؕ$\frac{2¦Ð}{3}¡Ü\frac{¦Ð}{2}$¡Ü£¬ÓÉ´ËÇóµÃÕýÊý¦ØµÄ·¶Î§ÊÇ$£¨0£¬\frac{3}{4}]$£¬£»  
¢Ý£¬º¯ÊýµÄÖÜÆÚT=¦Ð£¬º¯ÊýÖµµÈÓÚ0µÄxÖ®²îµÄ×îСֵΪ$\frac{T}{2}$£¬ËùÒÔx1-x2±ØÊÇ$\frac{¦Ð}{2}$µÄÕûÊý±¶£»
¢Þ£¬ÈôA¡¢BÊÇÈñ½Ç¡÷ABCµÄÁ½¸öÄڽǣ¬$\frac{¦Ð}{2}£¾\\;B£¾\frac{¦Ð}{2}-A$B£¾$\frac{¦Ð}{2}$-A£¬Ôò cosB-sinA£¼0£¬sinB-cosA£¾0£¬£»

½â´ð ½â£º¶ÔÓÚ¢Ù£¬¡ßy=|sin£¨¦Øx-$\frac{1}{2}$|µÄÖÜÆÚÊÇ$\frac{¦Ð}{¦Ø}$£¬¹ÊÕýÈ·£»
¶ÔÓÚ¢Ú£¬µ±x¡Ý0ʱ£¬y=sinx+sin|x|=2sinxÖµÓò²»ÊÇ[0£¬2]£¬¹Ê´í£»
¶ÔÓÚ¢Û£¬¡ßlg2¦Ð£¼1£¬lg4¦Ð£¾1£¬·½³Ìcosx=lgxÓÐÈý½â£¬ÕýÈ·£»
¶ÔÓڢܣ¬¦ØÎªÕýʵÊý£¬y=2sin¦ØxÔÚ$[-\frac{¦Ð}{3}£¬\frac{2¦Ð}{3}]$ÉϵÝÔö£¬ÓÉÌõ¼þÀûÓÃÕýÏÒº¯ÊýµÄµ¥µ÷ÐԿɵæؕ$\frac{2¦Ð}{3}¡Ü\frac{¦Ð}{2}$¡Ü£¬ÓÉ´ËÇóµÃÕýÊý¦ØµÄ·¶Î§ÊÇ$£¨0£¬\frac{3}{4}]$£¬¹ÊÕýÈ·£»  
¶ÔÓڢݣ¬º¯ÊýµÄÖÜÆÚT=¦Ð£¬º¯ÊýÖµµÈÓÚ0µÄxÖ®²îµÄ×îСֵΪ$\frac{T}{2}$£¬ËùÒÔx1-x2±ØÊÇ$\frac{¦Ð}{2}$µÄÕûÊý±¶£®¹Ê´í£»
¶ÔÓÚ¢Þ£¬ÈôA¡¢BÊÇÈñ½Ç¡÷ABCµÄÁ½¸öÄڽǣ¬$\frac{¦Ð}{2}£¾\\;B£¾\frac{¦Ð}{2}-A$B£¾$\frac{¦Ð}{2}$-A£¬Ôò cosB-sinA£¼0£¬sinB-cosA£¾0£¬¹ÊÕýÈ·£»
¹ÊÑ¡£ºC£®

µãÆÀ ±¾Ì⿼²éÁËÃüÌâµÄÕæ¼Ù£¬Éæ¼°µ½Èý½Çº¯ÊýµÄ֪ʶ£¬ÊôÓÚ»ù´¡Ì⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖªº¯Êýf£¨x£©=$\frac{x}{x+2}$-ax2£¬ÆäÖÐa¡ÊR£®
£¨1£©Èôa=1ʱ£¬Çóº¯Êýf£¨x£©µÄÁãµã£»
£¨2£©µ±a£¾0ʱ£¬ÇóÖ¤£ºº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©ÄÚÓÐÇÒ½öÓÐÒ»¸öÁãµã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚÊýÁÐ{an}ÖУ¬a1=-2£¬an+1=an-2n£¬Ôòa2017µÄֵΪ£¨¡¡¡¡£©
A£®22016B£®22018C£®-22017D£®22017

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ä³°Ù»õ¹«Ë¾1¡«6Ô·ݵÄÏúÊÛÁ¿xÓëÀûÈóyµÄͳ¼ÆÊý¾ÝÈç±í£º
Ô·Ý123456
ÏúÊÛÁ¿x£¨Íò¼þ£©1011131286
ÀûÈóy£¨ÍòÔª£©222529261612
£¨1£©¸ù¾Ý2¡«5Ô·ݵÄͳ¼ÆÊý¾Ý£¬Çó³öy¹ØÓÚxµÄ»Ø¹éÖ±Ïß·½³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$£»
£¨2£©ÈôÓɻعéÖ±Ïß·½³ÌµÃµ½µÄ¹À¼ÆÊý¾ÝÓëʣϵļìÑéÊý¾ÝµÄÎó²î¾ù²»³¬¹ý2ÍòÔª£¬ÔòÈÏΪµÃµ½µÄ»Ø¹éÖ±Ïß·½³ÌÊÇÀíÏëµÄ£¬ÊÔÎÊËùµÃ»Ø¹éÖ±Ïß·½³ÌÊÇ·ñÀíÏ룿
£¨²Î¿¼¹«Ê½£º$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$£©=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$£¬$\widehat{a}$=$\overline{y}$-b$\overline{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®$cos£¨-\frac{19¦Ð}{6}£©$µÄֵΪ£®£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$-\frac{1}{2}$C£®$\frac{{\sqrt{3}}}{2}$D£®$-\frac{{\sqrt{3}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®º¯Êýf£¨x£©=aln£¨x2+1£©+bx£¬g£¨x£©=bx2+2ax+b£¬£¨a£¾0£¬b£¾0£©£®ÒÑÖª·½³Ìg£¨x£©=0ÓÐÁ½¸ö²»Í¬µÄ·ÇÁãʵ¸ùx1£¬x2£®
£¨1£©ÇóÖ¤£ºx1+x2£¼-2£»
£¨2£©ÈôʵÊý¦ËÂú×ãµÈʽf£¨x1£©+f£¨x2£©+3a-¦Ëb=0£¬Çó¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªº¯Êýf£¨x£©£¨x¡ÊR£©Âú×ãf£¨x+¦Ð£©=f£¨x£©+cosx£¬µ±0¡Üx£¼¦Ðʱ£¬f£¨x£©=-1£¬Ôòf£¨$\frac{2017¦Ð}{3}$£©=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$-\frac{1}{2}$C£®$\frac{{\sqrt{3}}}{2}$D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªµÈ±ÈÊýÁÐ{an}ÖУ¬an+1=36£¬an+3=m£¬an+5=4£¬ÔòÔ²×¶ÇúÏß$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{3}$=1µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®$\frac{\sqrt{3}}{2}$C£®$\sqrt{5}$»ò$\frac{\sqrt{3}}{2}$D£®$\frac{\sqrt{5}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔĶÁÈçͼµÄ³ÌÐò¿òͼ£¬ÔËÐÐÏàÓ¦µÄ³ÌÐò£¬ÔòÊä³öµÄֵΪ£¨¡¡¡¡£©
A£®3B£®4C£®6D£®7

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸