8£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=2cos¦Õ}\\{y=2sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±êϵ·½³ÌÊÇ$¦Ñ=\frac{6}{{\sqrt{4+5{{sin}^2}¦È}}}$£¬Õý·½ÐÎABCDµÄ¶¥µã¶¼ÔÚC1ÉÏ£¬ÇÒA£¬B£¬C£¬DÒÀÄæÊ±Õë´ÎÐòÅÅÁУ¬µãAµÄ¼«×ø±êΪ$£¨2£¬\frac{¦Ð}{6}£©$£®
£¨¢ñ£©ÇóµãA£¬B£¬C£¬DµÄÖ±½Ç×ø±ê£»
£¨¢ò£©ÉèPΪC2ÉÏÈÎÒâÒ»µã£¬Çó|PA|2+|PB|2+|PC|2+|PD|2µÄ×î´óÖµ£®

·ÖÎö £¨I£©ÇúÏßC1µÄÆÕͨ·½³ÌÊÇx2+y2=4£¬¼«×ø±ê·½³ÌÊǦÑ=2£®¼´¿ÉµÃ³öµãA£¬B£¬C£¬DµÄ¼«×ø±ê£®
£¨II£©ÇúÏßC2µÄ¼«×ø±êϵ·½³ÌÊÇ$¦Ñ=\frac{6}{{\sqrt{4+5{{sin}^2}¦È}}}$£¬Á½±ßƽ·½¿ÉµÃ£º¦Ñ2£¨4+5sin2¦È£©=36£¬ÀûÓæÑ2=x2+y2£¬y=¦Ñsin¦È¿ÉµÃÖ±½Ç×ø±ê·½³Ì£¬¿ÉµÃ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=3cos¦È}\\{y=2sin¦È}\end{array}\right.$£¬£¨¦ÈΪ²ÎÊý£©£®¹Ê¿ÉÉèP£¨3cos¦È£¬2sin¦È£©ÆäÖЦÈΪ²ÎÊý£®ÀûÓÃÁ½µãÖ®¼äµÄ¾àÀ빫ʽ¿ÉµÃt=|PA|2+|PB|2+|PC|2+|PD|2=32+20cos2¦È£¬¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨I£©ÇúÏßC1µÄÆÕͨ·½³ÌÊÇx2+y2=4£¬¼«×ø±ê·½³ÌÊǦÑ=2£®
¡àµãA£¬B£¬C£¬DµÄ¼«×ø±êΪ$£¨2£¬\frac{¦Ð}{6}£©£¬£¨2£¬\frac{2¦Ð}{3}£©£¬£¨2£¬\frac{7¦Ð}{6}£©£¬£¨2£¬\frac{5¦Ð}{3}£©$£¬
´Ó¶øµãA£¬B£¬C£¬DµÄÖ±½Ç×ø±êΪ$£¨\sqrt{3}£¬1£©£¬£¨-1£¬\sqrt{3}£©£¬£¨-\sqrt{3}£¬-1£©£¬£¨1£¬-\sqrt{3}£©$£®
£¨II£©ÇúÏßC2µÄ¼«×ø±êϵ·½³ÌÊÇ$¦Ñ=\frac{6}{{\sqrt{4+5{{sin}^2}¦È}}}$£¬Á½±ßƽ·½¿ÉµÃ£º¦Ñ2£¨4+5sin2¦È£©=36£¬¿ÉµÃÖ±½Ç×ø±ê·½³Ì£º4x2+9y2=36£¬¼´ÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌÊÇ$\frac{x^2}{9}+\frac{y^2}{4}=1$£¬Æä²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}{x=3cos¦È}\\{y=2sin¦È}\end{array}\right.$£¬£¨¦ÈΪ²ÎÊý£©£®
¹Ê¿ÉÉèP£¨3cos¦È£¬2sin¦È£©ÆäÖЦÈΪ²ÎÊý£®
¡àt=|PA|2+|PB|2+|PC|2+|PD|2=36cos2¦È+16sin2¦È+16=32+20cos2¦È£¬
¡à|PA|2+|PB|2+|PC|2+|PD|2µÄ×î´óֵΪ52£®

µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢Á½µãÖ®¼äµÄ¾àÀ빫ʽ¡¢Í¬½ÇÈý½Çº¯Êý»ù±¾¹ØÏµÊ½£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=lnx+$\frac{1-x}{ax}$£¬ÆäÖÐa£¾0£®
£¨¢ñ£©µ±a=1ʱ£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©Çóº¯Êýf£¨x£©ÔÚÇø¼ä[2£¬3]ÉϵÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚËÄÀâ×¶S-ABCDÖУ¬µ×ÃæABCDÊÇÖ±½ÇÌÝÐΣ¬AB´¹Ö±ÓÚADºÍBC£¬Æ½ÃæSAB¡Íµ×ÃæABCD£¬ÇÒSA=SB=$\sqrt{2}$£¬AD=1£¬AB=2£¬BC=3£®
£¨¢ñ£©ÇóÖ¤£ºÆ½ÃæSAD¡ÍÆ½ÃæSBC£»
£¨¢ò£©ÇóÆ½ÃæSCDÓëµ×ÃæABCDËù³É¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®É躯Êýf£¨x£©=xlnx£¬g£¨x£©=-a+xlnb£¨a£¾0£¬b£¾0£©£®
£¨I£©É躯Êýh£¨x£©=f£¨x£©+g£¨x£©£¬Çóh£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨II£©ÒÑÖª£¨a+b£©e£¼4b£¬Èô´æÔÚx0¡Ê[$\frac{a+b}{4}$£¬$\frac{3a+b}{5}$]£¬Ê¹µÃf£¨x0£©¡Üg£¨x0£©³ÉÁ¢£¬Çó$\frac{b}{a}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á+1}\end{array}\right.$£¨¦ÁΪ²ÎÊý£¬t£¾0£©£¬ÇúÏßC2£º$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}s+1}\\{y=\frac{\sqrt{2}}{2}s-1}\end{array}\right.$£¨sΪ²ÎÊý£©£¬ÔÚÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC3£º¦Ñcos¦È-¦Ñsin¦È=2£¬¼ÇÇúÏßC2ÓëC3µÄ½»µãΪP£®
£¨¢ñ£©ÇóµãPµÄÖ±½Ç×ø±ê£»
£¨¢ò£©µ±ÇúÏßC1ÓëC3ÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬C1ÓëC2ÏཻÓÚA¡¢BÁ½µã£¬Çó|PA|2+|PB|2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=a+bcosx+csinxµÄͼÏó¾­¹ý£¨0£¬1£©£¬£¨$\frac{¦Ð}{2}$£¬1£©Á½µã£®
£¨1£©ÀûÓù«Ê½sinx+cosx=$\sqrt{2}$sin£¨x+$\frac{¦Ð}{4}$£©½«f£¨x£©±íʾΪAsin£¨¦Øx+¦Õ£©+BµÄÐÎʽ£¬²¢Çóa=2ʱf£¨x£©ÔÚ[0£¬$\frac{¦Ð}{2}$]ÉϵÄÖµÓò£»
£¨2£©Èô²»µÈʽ|f£¨x£©|¡Ü2£¬ÔÚ[0£¬$\frac{¦Ð}{2}$]ÉϺã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨3£©µ±a£¾1ʱ£¬ÈôÔÚ[0£¬$\frac{¦Ð}{2}$]ÉÏ´æÔÚxʹ²»µÈʽf£¨x+$\frac{¦Ð}{4}$£©f£¨x-$\frac{¦Ð}{4}$£©+a2-4a+2¡Ý0³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚABΪֱ¾¶µÄ°ëÔ²OÉÏȡһµãC£¬Á¬½ÓAC²¢ÑÓ³¤Óë¹ýBµãµÄÇÐÏßÏཻÓÚµãD£¬ÒÔCΪÇеã×÷ÇÐÏß½»ABµÄÑÓ³¤ÏßÓÚG£¬½»BDÓÚF£®
£¨1£©ÇóÖ¤£ºDF=BF£»
£¨2£©ÈôAC=CG£¬Çó$\frac{AG}{CG}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÒÑÖªÖ±ÏßPAÓë°ëÔ²OÇÐÓÚµãA£¬PO½»°ëÔ²ÓÚB£¬CÁ½µã£¬AD¡ÍPOÓÚµãD£®
£¨¢ñ£©ÇóÖ¤£º¡ÏPAB=¡ÏBAD£»
£¨¢ò£©ÇóÖ¤£ºPB•CD=PC•BD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®º¯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬f£¨-2£©=2£¬¶ÔÈÎÒâx¡ÊR£¬f¡ä£¨x£©£¾2£¬Ôòf£¨x£©£¾2x+6µÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨-2£¬2£©B£®£¨-¡Þ£¬-2£©C£®£¨-2£¬+¡Þ£©D£®£¨-¡Þ£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸