精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=2ax-1+3,(a>0且a≠1),则其图象一定过定点(1,5).

分析 由a0=1可得,令x-1=0,从而解得.

解答 解:令x-1=0,则x=1,
此时y=2+3=5,
∴则其图象一定过定点(1,5)
故答案为:(1,5).

点评 本题考查了指数函数的定点问题,也是恒成立问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.点P在圆(x-3)2+(y-4)2=1上运动,两定点A、B的坐标分别为(-6,0)、(6,0).
(1)求$\overrightarrow{OP}$$•\overrightarrow{AP}$的取值范围;
(2)求|PA|2+|PB|2的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$(\frac{1}{2})^{{x}^{2}-1}$的单调递增区间为(  )
A.(-∞,0]B.[0,+∞)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)的定义域为D内的某个区间I上是增函数,且F(x)=$\frac{f(x)}{x}$在I上也是增函数,则称y=f(x)是I上的“完美函数”,已知g(x)=ex+x-lnx+1,若函数g(x)是区间[$\frac{m}{2}$,+∞)上的“完美函数”,则正整数m的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$,|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,且|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{7}$,则向量$\overrightarrow{a}$与向量$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若对数函数f(x)的图象过点(9,2),则f(3)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数φ(x)=x2+ax+b,f(x)=$\frac{φ(x)-ax}{x}$.
(1)当f(1)=f(4),函数F(x)=f(x)-k有且仅有一个零点x0,且x0>0时,求k的值;
(2)求证:存在x0∈[-1,1],使|φ(x0)|≥|a|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=xsinx+cosx的图象关于(  )
A.x轴对称B.y轴对称C.原点对称D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=4x-2x+1+1(x>0)的反函数为y=f-1(x),则f-1(9)=2.

查看答案和解析>>

同步练习册答案