精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系xOy中,已知点A(0,3)和B(6,0).

(Ⅰ)求线段AB垂直平分线的方程;

(Ⅱ)若曲线C上的任意一点P满足2|PA|=|PB|,求曲线C的方程.

【答案】(I);(II).

【解析】

(Ⅰ)由AB的坐标求得AB的中点坐标,再求出AB所在直线当斜率,可得AB的垂直平分线的斜率,代入直线方程的点斜式得答案;

(Ⅱ)设Pxy),运用两点的距离公式,平方化简可得曲线C的方程.

(Ⅰ)∵A(0,3),B(6,0),

AB的中点坐标为(3,),

∴线段AB垂直平分线的方程为y

即4x﹣2y﹣9=0;

(Ⅱ)设Pxy),由2|PA|=|PB|,

可得

平方可得4x2+4y2﹣24y+36=x2﹣12x+36+y2

化简可得x2+y2+4x﹣8y=0,

则曲线C的方程为圆

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】长郡中学早上8点开始上课,若学生小典与小方匀在早上7:40至8:00之间到校,且两人在该时间段的任何时刻到校都是等可能的,则小典比小方至少早5分钟到校的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,侧棱PA⊥平面ABCD,E为AD的中点,BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1;
(1)求二面角C﹣PB﹣E的余弦值;
(2)在线段PE上是否存在点M,使得DM∥平面PBC?若存在,求出点M的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个判断: ①某校高三一班和高三二班的人数分别是m,n,某次测试数学平均分分别是a,b,则这两个班的数学平均分为
②10名工人某天生产同一零件的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有c>a>b;
③从总体中抽取的样本为 ,则回归直线 必过点(
④已知ξ服从正态分布N(0,σ2),且P(﹣2≤ξ≤0)=4,则P(ξ>2)=0.2
其中正确的个数有(
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三第一学期期末四校联考数学第I卷中共有8道选择题,每道选择题有4个选项,其中只有一个是正确的;评分标准规定:“每题只选一项,答对得5分,不答或答错得0分.”某考生每道题都给出一个答案,已确定有5道题的答案是正确的,而其余选择题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜,试求出该考生:
(1)得40分的概率;
(2)得多少分的可能性最大?
(3)所得分数ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0,+∞)上的函数 ,其中a>0.设两曲线y=f(x)与y=g(x)有公共点,且在公共点处的切线相同.则b的最大值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=kex﹣x2(其中k∈R,e是自然对数的底数).
(Ⅰ)若k<0,试判断函数f(x)在区间(0,+∞)上的单调性;
(Ⅱ)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;
(Ⅲ)若函数f(x)有两个极值点x1 , x2(x1<x2),求k的取值范围,并证明0<f(x1)<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(3+x)﹣log2(3﹣x),
(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)已知f(sinα)=1,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高二年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:


(1)求出表中M,P及图中 的值;
(2)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间[10,15]内的人数;
(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30]内的概率.

查看答案和解析>>

同步练习册答案