精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=log2(3+x)﹣log2(3﹣x),
(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;
(2)已知f(sinα)=1,求α的值.

【答案】
(1)解:要使函数f(x)=log2(3+x)﹣log2(3﹣x)有意义,则 ﹣3<x<3,

∴函数f(x)的定义域为(﹣3,3);

∵f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),∴函数f(x)为奇函数.


(2)解:令f(x)=1,即 ,解得x=1.

∴sinα=1,

∴α=2k ,(k∈Z).


【解析】(1)要使函数f(x)=log2(3+x)﹣log2(3﹣x)有意义,则 ﹣3<x<3即可,

由f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),可判断函数f(x)为奇函数.

(2)令f(x)=1,即 ,解得x=1.即sinα=1,可求得α.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=logax当x>2 时恒有|y|>1,则a的取值范围是(
A.
B.
C.1<a≤2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知点A(0,3)和B(6,0).

(Ⅰ)求线段AB垂直平分线的方程;

(Ⅱ)若曲线C上的任意一点P满足2|PA|=|PB|,求曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的奇函数,且f(x+2)=f(x﹣2);当0≤x≤1时,f(x)= ,则f(1)+f(2)+f(3)+…+f等于(
A.﹣1
B.0
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司有A、B、C、D、E五辆汽车,其中A、B两辆汽车的车牌尾号均为1,C、D两辆汽车的车牌尾号均为2,E车的车牌尾号为6.已知在非限行日,每辆车可能出车或不出车,A、B、E三辆汽车每天出车的概率均为 ,C、D两辆汽车每天出车的概率均为 ,五辆汽车是否出车相互独立,该公司所在地区汽车限行规定如下:

工作日

星期一

星期二

星期三

星期四

星期五

限行车牌尾号

0和5

1和6

2和7

3和8

4和9

例如,星期一禁止车牌尾号为0和5的车辆通行.
(1)求该公司在星期一至少有2辆汽车出车的概率;
(2)设X表示该公司在星期二和星期三两天出车的车辆数之和,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的右焦点与抛物线y2=4x的焦点F重合,且椭圆的离心率是 ,如图所示.

(1)求椭圆的标准方程;
(2)抛物线的准线与椭圆在第二象限相交于点A,过点A作抛物线的切线l,l与椭圆的另一个交点为B,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数y=f″(x)是y=f′(x)的导数.某同学经过探究发现,任意一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有对称中心(x0 , f(x0)),其中x0满足f″(x0)=0.已知函数f(x)= x3 x2+3x﹣ ,则f( )+f( )+f( )+…+f( )=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抛物线y2=4x的内接三角形的一个顶点在原点,三边上的高线都通过抛物线的焦点,求此三角形外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=2AD,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE(A1平面ABCD),若M、O分别为线段A1C、DE的中点,则在△ADE翻转过程中,下列说法错误的是(
A.与平面A1DE垂直的直线必与直线BM垂直
B.异面直线BM与A1E所成角是定值
C.一定存在某个位置,使DE⊥MO
D.三棱锥A1﹣ADE外接球半径与棱AD的长之比为定值

查看答案和解析>>

同步练习册答案