精英家教网 > 高中数学 > 题目详情
8.命题“?x>4,x2>16”的否定是?x>4,x2≤16.

分析 直接利用全称命题的否定是特称命题,写出经过即可.

解答 解:因为全称命题的否定是特称命题,所以,命题“?x>4,x2>16”的否定是:?x>4,x2≤16.
故答案为:?x>4,x2≤16;

点评 本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数y=lg(mx2+2x+m-1).
(1)若函数的定义域为R,求实数m的取值范围;
(2)若函数的定义域为M,且(0,3)⊆M,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知cos(θ+$\frac{π}{6}$)=$\frac{5}{13}$,θ∈(0,$\frac{π}{2}$),则cosθ=(  )
A.$\frac{12+3\sqrt{3}}{26}$B.$\frac{12+5\sqrt{3}}{26}$C.$\frac{6+3\sqrt{3}}{13}$D.$\frac{6+4\sqrt{3}}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在“南安一中校园歌手大赛”比赛现场上七位评委为某选手打出的分数的茎叶统计图如图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为(  )
A.85和6.8B.85和1.6C.86和6.8D.86和1.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{bn}满足b1=$\frac{3}{10}$,bn+1=1-$\frac{1}{4{b}_{n}}$(n∈N*),设an=$\frac{2}{1-2{b}_{n}}$
(1)求证:数列{an}是等差数列;
(2)数列{a${\;}_{{c}_{n}}$}为等比数列,且c1=5,c2=8,若对任意的n∈N*都有k(2cn-7)<an成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合M={a2-a,0}.若a∈M,则实数a的值为(  )
A.0B.2C.2或0D.2或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简:$\frac{1-cos2x}{2}$+$\frac{\sqrt{3}}{2}$sin2x+1+cos2x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.29•310+14被25除的余数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知f(x)=$\frac{lnx}{1+x}$,f(x)在x=x0处取得最大值,以下各式正确的序号为①④
①f(x0)<x0;   ②f(x0)=x0;  ③f(x0)>x0
④f(x0)<$\frac{1}{2}$;   ⑤f(x0)>$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案