分析 可知f(x)=$\frac{lnx}{1+x}$的定义域为(0,+∞),求导f′(x)=$\frac{\frac{1}{x}(x+1)-lnx}{(x+1)^{2}}$,再令g(x)=$\frac{1}{x}$(x+1)-lnx=1+$\frac{1}{x}$-lnx,可判断其在(0,+∞)上是减函数;从而可得e<x0<e2;而f(x)=$\frac{lnx}{1+x}$<$\frac{ln(x+1)}{x+1}$;再令m(x)=$\frac{lnx}{x}$;从而可得fmax(x)<mmax(x)=$\frac{1}{e}$<$\frac{1}{2}$;从而得到答案.
解答 解:f(x)=$\frac{lnx}{1+x}$的定义域为(0,+∞),
f′(x)=$\frac{\frac{1}{x}(x+1)-lnx}{(x+1)^{2}}$,
令g(x)=$\frac{1}{x}$(x+1)-lnx=1+$\frac{1}{x}$-lnx,其在(0,+∞)上是减函数;
g(e)=1+$\frac{1}{e}$-1>0,g(e2)=1+$\frac{1}{{e}^{2}}$-2<0;
故e<x0<e2;
而f(x)=$\frac{lnx}{1+x}$<$\frac{ln(x+1)}{x+1}$;令m(x)=$\frac{lnx}{x}$;
故fmax(x)<mmax(x);
而可判断m(x)=$\frac{lnx}{x}$在(0,e)上单调递增,在(e,+∞)上单调递减;
故mmax(x)=$\frac{1}{e}$<$\frac{1}{2}$;
故f(x0)<$\frac{1}{2}$;f(x0)<x0;
故答案为:①④.
点评 本题考查了导数的综合应用及函数零点的判定定理的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | sin$\frac{1}{2}>cos\frac{1}{2}>tan\frac{1}{2}$ | B. | cos$\frac{1}{2}>tan\frac{1}{2}>sin\frac{1}{2}$ | ||
| C. | tan$\frac{1}{2}>sin\frac{1}{2}>cos\frac{1}{2}$ | D. | tan$\frac{1}{2}>cos\frac{1}{2}>sin\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| y1 | y2 | 总计 | |
| x1 | a | 21 | 73 |
| x2 | 2 | 25 | 27 |
| 总计 | b | 46 | 100 |
| A. | 146 94 | B. | 54 52 | C. | 94 146 | D. | 52 54 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com