精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明:CD⊥AE;
(2)证明:PD⊥平面ABE;
(3)求二面角B-PC-D的余弦值.
证明:(1)PA⊥底面ABCD,
∴CD⊥PA.
又CD⊥AC,PA∩AC=A,
∴CD⊥面PAC,AE?面PAC,
∴CD⊥AE.
(2)PA=AB=BC,∠ABC=60°,
∴PA=AC,E是PC的中点,
∴AE⊥PC,
由(1)知CD⊥AE,从而AE⊥面PCD,
∴AE⊥PD.易知BA⊥PD,
∴PD⊥面ABE.
(3)由题可知PA,AB,AD两两垂直,如图建立空间直角坐标系,
设AB=2,则B(2,0,0),C(1,
3
,0),P(0,0,2),D(0,
4
3
,0)
设平面PBC的一个法向量为
m
=(x,y,z),
PB
=(2,0,-2),
BC
=(-1,
3
,0)
PB
m
=0
BC
m
=0
,即
2x-2z=0
-x+
3
y=0

取y=
3
,则x=z=3
m
=(3,
3
,3)
设面PDC的一个法向量为
n
=(x,y,z)
PC
=(1,
3
,-2)
PD
=(0,
4
3
,-2)

PC
n
=0
PD
n
=0
,即
x+
3
y-2z=0
4
3
y-2z=0

y=
3
,则x=1,z=2,
n
=(1,
3
,2)

cos<
m
n
>=
m
n
|
m
||
n
|
=
3+3+6
21
8
=
42
7

由图可知钝二面角B-PC-D的余弦值为-
42
7
.(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

求证:如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线互相平行.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

△ABC的三个顶点分别是A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,己知平行四边形1BCD中,∠B1D=6三°,1B=6,1D=3,G为CD中点,现将梯形1BCG沿着1G折起到1FoG.
(1)求证:直线Co平面1BF;
(2)如果FG⊥平面1BCD求二面B-oF-1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点P为矩形ABCD所在平面外一点,PA⊥平面ABCD,E,F分别为线段PB,PC的中点,且AD=4,PA=AB=2
(1)求直线EC和面PAD所成的角
(2)求点P到平面AFD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠BCD=60°,PA=PD=
2
,E是BC中点,点Q在侧棱PC上.
(Ⅰ)求证:AD⊥PB;
(Ⅱ)若Q是PC中点,求二面角E-DQ-C的余弦值;
(Ⅲ)若
PQ
PC
,当PA平面DEQ时,求λ的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AB=4,BC=2,CC1=3,
CE
=2
EC1

(1)求点D1到平面BDE的距离;
(2)求直线A1B与平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为线段CD中点.
(1)求直线B1E与直线AD1所成的角的余弦值;
(2)若AB=2,求二面角A-B1E-
A_
1
的大小;
(3)在棱AA1上是否存在一点P,使得DP平面B1AE?若存在,求AP的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知如图,平面ABD⊥平面BCD,∠BAD=∠BCD=90°,∠ABD=45°,∠CBD=30°.
(Ⅰ)异面直线AB、CD所成的角为α,异面直线AC、BD所成的角为β,求证:α=β;
(Ⅱ)求二面角B-AC-D的余弦值的绝对值.

查看答案和解析>>

同步练习册答案