【题目】已知向量 =(sinθ,cosθ﹣2sinθ), =(1,2).
(1)若 ,求tanθ的值;
(2)若 ,求θ的值.
【答案】
(1)解:∵ ∥
∴2sinθ=cosθ﹣2sinθ即4sinθ=cosθ
∴tanθ=
(2)解:由| |=| |
∴sin2θ+(cosθ﹣2sinθ)2=5
即1﹣2sin2θ+4sin2θ=5化简得sin2θ+cos2θ=﹣1
故有sin(2θ+ )=﹣
又∵θ∈(0,π)∴2θ+ ∈( , π)
∴2θ+ = π或2θ+ = π
∴θ= 或θ= π
【解析】(1)根据平面向量的共线定理的坐标表示即可解题.(2)由| |=| |化简得sin2θ+cos2θ=﹣1,再由θ∈(0,π)可解出θ的值.
【考点精析】关于本题考查的平面向量的坐标运算,需要了解坐标运算:设,则;;设,则才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】我们国家正处于老龄化阶段,“老有所依”也是政府的民生工程.为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如图表.
(1)若采用分层抽样的方法,再从样本中不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?
(2)据统计该市大约有的户籍老人无固定收入,且在各健康状况人群中所占比例相同,政府计划每月为这部分老人发放生活补贴,标准如下:
①80岁及以上长者每人每月发放生活补贴200元;
②80岁以下老人每人每月发放生活补贴120元;
③不能自理的老人每人每月额外再发放生活补贴100元.
若用频率估计概率,设任意户籍老人每月享受的生活补贴为元,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某金匠以黄金为原材料加工一种饰品,经多年的数据统计得知,该金匠平均每加5 个饰品中有4个成品和1个废品,每个成品可获利3万元,每个废品损失1万元,假设该金匠加工每件饰品互不影响,以频率估计概率.
(1)若金金匠加工4个饰品,求其中废品的数量不超过1的概率;
(2)若该金匠加工了 3个饰品,求他所获利润的数学期望.
(两小问的计算结果都用分数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到如图所示的频率分布直方图:
(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;
(2)若用分层抽样的方法从分数在和的学生中共抽取人,该人中成绩在的有几人?
(3)在(2)中抽取的人中,随机抽取人,求分数在和各人的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面,底面是直角梯形,,,,是上的点.
(Ⅰ)求证:平面⊥平面;
(Ⅱ)若是的中点,且二面角的余弦值为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在一次数学考试中,第22题和第23题为选做题,规定每位考生必须且只须在其中选做一题,现有甲、乙、丙、丁4名考生参加考试,其中甲、乙选做第22题的概率均为,丙、丁选做第22题的概率均为.
(Ⅰ)求在甲选做第22题的条件下,恰有两名考生选做同一道题的概率;
(Ⅱ)设这4名考生中选做第22题的学生个数为X,求X的概率分布及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com