精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(sinθ,cosθ﹣2sinθ), =(1,2).
(1)若 ,求tanθ的值;
(2)若 ,求θ的值.

【答案】
(1)解:∵

∴2sinθ=cosθ﹣2sinθ即4sinθ=cosθ

∴tanθ=


(2)解:由| |=| |

∴sin2θ+(cosθ﹣2sinθ)2=5

即1﹣2sin2θ+4sin2θ=5化简得sin2θ+cos2θ=﹣1

故有sin(2θ+ )=﹣

又∵θ∈(0,π)∴2θ+ ∈( π)

∴2θ+ = π或2θ+ = π

∴θ= 或θ= π


【解析】(1)根据平面向量的共线定理的坐标表示即可解题.(2)由| |=| |化简得sin2θ+cos2θ=﹣1,再由θ∈(0,π)可解出θ的值.
【考点精析】关于本题考查的平面向量的坐标运算,需要了解坐标运算:设;;设,则才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我们国家正处于老龄化阶段,“老有所依”也是政府的民生工程.为了了解老人们的健康状况,政府从老人中随机抽取600人并委托医疗机构免费为他们进行健康评估,健康状况共分为不能自理、不健康尚能自理、基本健康、健康四个等级,并以80岁为界限分成两个群体进行统计,样本分布被制作成如图表.

(1)若采用分层抽样的方法,再从样本中不能自理的老人中抽取16人进一步了解他们的生活状况,则两个群体中各应抽取多少人?

(2)据统计该市大约有的户籍老人无固定收入,且在各健康状况人群中所占比例相同,政府计划每月为这部分老人发放生活补贴,标准如下:

①80岁及以上长者每人每月发放生活补贴200元;

②80岁以下老人每人每月发放生活补贴120元;

③不能自理的老人每人每月额外再发放生活补贴100元.

若用频率估计概率,设任意户籍老人每月享受的生活补贴为元,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心为 的圆过点,且圆心在直线 .

(1)求圆心为的圆的标准方程;

(2)过点 作圆的切线,求切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 是边长为2的正方形边的中点,将分别沿折起,使得点与点重合,记为点,得到三棱锥

(Ⅰ)求证:平面平面

(Ⅱ)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线 的准线上,记的焦点为,过点且与轴垂直的直线与抛物线交于 两点,则线段的长为( )

A. 4 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某金匠以黄金为原材料加工一种饰品,经多年的数据统计得知,该金匠平均每加5 个饰品中有4个成品和1个废品,每个成品可获利3万元,每个废品损失1万元,假设该金匠加工每件饰品互不影响,以频率估计概率.

(1)若金金匠加工4个饰品,求其中废品的数量不超过1的概率;

(2)若该金匠加工了 3个饰品,求他所获利润的数学期望.

(两小问的计算结果都用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三上学期期末数学考试成绩中,随机抽取了名学生的成绩得到如图所示的频率分布直方图:

(1)根据频率分布直方图,估计该校高三学生本次数学考试的平均分;

(2)若用分层抽样的方法从分数在的学生中共抽取人,该人中成绩在的有几人?

(3)在(2)中抽取的人中,随机抽取人,求分数在人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,上的点.

)求证:平面平面

的中点,且二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次数学考试中,第22题和第23题为选做题,规定每位考生必须且只须在其中选做一题,现有甲、乙、丙、丁4名考生参加考试,其中甲、乙选做第22题的概率均为,丙、丁选做第22题的概率均为

(Ⅰ)求在甲选做第22题的条件下,恰有两名考生选做同一道题的概率;

(Ⅱ)设这4名考生中选做第22题的学生个数为X,求X的概率分布及数学期望

查看答案和解析>>

同步练习册答案