精英家教网 > 高中数学 > 题目详情
已知三角形的三边长分别为5,7,8,则该三角形最大角与最小角之和为
 
考点:余弦定理
专题:解三角形
分析:设7所对的角为α,利用余弦定理求出cosα的值,确定出α的度数,即可确定出该三角形最大角与最小角之和.
解答: 解:∵三角形的三边长分别为5,7,8,且7所对的角为α,
∴cosα=
52+82-72
2×5×8
=
1
2

∴α=60°,
则该三角形最大角与最小角之和为120°.
故答案为:120°
点评:此题考查了余弦定理,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设向量
a
=(a1,a2),
b
=(b1,b2),定义一运算:
a
?
b
=(a1,a2)?(b1,b2)=(a1b1,a2b2),
已知
m
=(
1
2
,2),
n
=(x1,sinx1).点Q在y=f(x)的图象上运动,且满足
OQ
=
m
?
n
(其中O为坐标原点),则y=f(x)的最小正周期的和是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1 (a>b>0)有两个顶点在直线x+
4
3
y=4上,则此椭圆的焦点坐标是(  )
A、(±5,0)
B、(0,±5)
C、(±
7
,0)
D、(0,±
7

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四种说法:
①命题“?x∈R,使得x2+1>3x”的否定是“?x∈R,都有x2+1≤3x”;
②设p、q是简单命题,若“p∨q”为假命题,则“?p∧?q”为真命题;
③若p是q的充分不必要条件,则?p是?q的必要不充分条件;
④把函数y=sin(-2x)(x∈R)的图象上所有的点向右平移
π
8
个单位即可得到函数y=sin(-2x+
π
4
)
(x∈R)的图象.其中所有正确说法的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|x2<4},  Q={x|
x
<4}
,则P∩Q=(  )
A、{x|x<2}B、{x|0≤x<2}
C、PD、Q

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,k),
b
=(2,2),且
a
+
b
a
共线,那么k的值为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中既不是奇函数也不是偶函数的是(  )
A、y=2|x|
B、y=lg(
x2+1
-x)
C、y=2x-2-x
D、
3
5
+
4
5
x

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:lg5(lg8+lg1000)+(lg2
3
2+lg
1
6
+lg0.006=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={y|y=-2x,x∈[2,3]},B={x|x2+3x-a2-3a>0}.
(1)当a=4时,求A∩B;
(2)若命题“x∈A”是命题“x∈B”的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案