精英家教网 > 高中数学 > 题目详情
已知f(x)=x3-3ax-1(a≠0)在x=-1处取得极值.
(1)求实数a的值;
(2)求g(x)=
13
x3+g′(1)•(1+f′(x))在区间[-1,1]上的最大值和最小值.
分析:(1)因为f(x)在x=-3是取极值,则求出f′(x)得到f′(-3)=0解出求出a即可.
(2)先求出g′(1)=-
1
5
,g′(x)=x2-
6
5
x=x(x-
6
5
)再利用导数工具求最值即可.
解答:解:(1)f′(x)=3x2-3a,在x=-1处取得极值,则f′(-1)=0.解得a=1
所以f(x)=x3-3x-1,f′(x)=3x2-3,
(2)g(x)=
1
3
x3+g′(1)•(3x2-2),g′(x)=x2+g′(1)•6x,
令x=1得,g′(1)=1+g′(1)•6,解得g′(1)=-
1
5

所以g′(x)=x2-
6
5
x=x(x-
6
5

当-1<x<0时,g′(x)>0,g(x)单调递增,当0<x<1时,g′(x)<0,g(x)单调递减,
所以g(x)最大值为g(0)=
2
5

由于g(-1)=-
8
15
<g(1)=
2
15

所以g(x)最小值为g(-1)=-
8
15
点评:本题考查了利用导数求闭区间上函数的最值,解题的关键是利用导数工具,确定函数的最值,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x3+mx2-x+2(m∈R).
(1)如果函数f(x)的单调递减区间为(
13
,1),求函数f(x)的解析式;
(2)若f(x)的导函数为f′(x),对任意x∈(0,+∞),不等式f′(x)≥2xlnx-1恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+ax2-(2a+3)x+a2(a∈R).
(1)若曲线y=f(x)在x=-1处的切线与直线2x-y-1=0平行,求a的值;
(2)当a=-2时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+x-2在点P处的切线与直线y=4x-1平行,则切点P的坐标是
(1,0)或(-1,-4)
(1,0)或(-1,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+asinx-b
3x
+9(a,b∈R),且f(-2013)=7,则f(2013)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x3+3x2+a(a为常数) 在[-3,3]上有最小值3,求f(x)在[-3,3]上的最大值?

查看答案和解析>>

同步练习册答案