精英家教网 > 高中数学 > 题目详情
14.设函数f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.
(1)求它的定义域;
(2)判断它的奇偶性;
(3)求证:f($\frac{1}{x}$)=-f(x);
(4)求证:f(x)在(1,+∞)上递增.

分析 (1)根据函数成立的条件即可求它的定义域;
(2)根据函数奇偶性的定义即可判断它的奇偶性;
(3)代入直接证明即可求证:f($\frac{1}{x}$)=-f(x);
(4)根据复合函数单调性的性质即可证明f(x)在(1,+∞)上递增.

解答 解:(1)由1-x2≠0得x2≠1,即x≠±1,
即函数的定义域为{x|x≠±1};
(2)∵f(-x)=$\frac{1+(-x)^{2}}{1-(-x)^{2}}$=$\frac{1+{x}^{2}}{1-{x}^{2}}$=f(x),
∴函数为偶函数;
(3)∵f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$.
∴f($\frac{1}{x}$)=$\frac{1+(\frac{1}{x})^{2}}{1-(\frac{1}{x})^{2}}$=$\frac{{x}^{2}+1}{{x}^{2}-1}$=-$\frac{1+{x}^{2}}{1-{x}^{2}}$=-f(x);
(4)∵f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$=$\frac{2-(1-{x}^{2})}{1-{x}^{2}}$=$\frac{2}{1-{x}^{2}}$-1.
∴当x>1时,y=1-x2为减函数,且y=1-x2<0,
则函数y=$\frac{2}{1-{x}^{2}}$为增函数,即y=$\frac{2}{1-{x}^{2}}$-1为增函数.
即f(x)在(1,+∞)上递增.

点评 本题主要考查函数定义域,奇偶性,单调性的判断和证明,综合考查函数的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2x+1,当点P(x,y)在y=f(x)图象上运动时,点Q(-$\frac{y}{2}$,$\frac{x}{3}$)在y=g(x)的图象上,求函数g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在等差数列{an}中,已知a1=23,公差d为整数,a6为正数,a7为负数,求a8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设集合A={(x,y)|y=x+1,x∈R},B={(x,y)|y=-x2+2x+$\frac{3}{4}$,x∈R},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=|x2+2x-3|的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义在R上的偶函数f(x)满足f(x+1)=f(x-1)且当x∈[-1,0]时,f(x)=9x+$\frac{4}{9}$,函数g(x)=log${\;}_{\frac{1}{2}}$x-$\frac{2}{9}$,则关于x的不等式f(x)<g(|x+1|)的解集为(  )
A.(-2,-1)∪(-1,0)B.(-$\frac{3}{2}$,-1)∪(-1,-$\frac{1}{2}$)C.(-$\frac{5}{4}$,-1)∪(-1,-$\frac{3}{4}$)D.(-$\frac{7}{4}$,-1)∪(-1,-$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设{an}是各项均为正数的等比数列且a1+a2=2($\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$),a1+a2+a3=64($\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$)
(1)求数列{an}的通项公式;
(2)设bn=(an+$\frac{1}{{a}_{n}}$)2,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数的单调性,并求出单调区间:f(x)=2x2-3x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知向量$\overrightarrow{a}$=(sin(π-x),1),$\overrightarrow{b}$=($\sqrt{3}$,sinx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$.
(1)求f(x)的单调减区间;
(2)若g(x)=f(x-$\frac{π}{6}$)+1,求g(x)对称轴及最大值.

查看答案和解析>>

同步练习册答案