已知函数t(x)=x3+mx2+x是奇函数,s(x)=ax2+nx+2是偶函数,设
f(x)=t(x)+s(x).
(1)若a=-1,令函数g(x)=2x-f(x),求函数g(x)在(-1,2)上的极值;
(2)对
恒有
成立,求实数a的取值范围.
科目:高中数学 来源:2004年高考教材全程总复习试卷·数学 题型:044
已知函数f(x)=x(x-a)(x-b),其中0<a<b.
(1)设f(x)在x=s及x=t处取到极值,其中s<t,求证:0<s<a<t<b.
(2)设A(s,f(s)),B(t,f(t)),求证:线段AB的中点C在曲线y=f(x)上.
(3)若a+b<2
,求证:过原点且与曲线y=f(x)相切的两条直线不可能垂直.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数f(x)=4x3+3tx2-6t2x+t-1,x∈R,其中t∈R.
(1)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)当t≠0时,求f(x)的单调区间;
(3)证明:对任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.
查看答案和解析>>
科目:高中数学 来源:新课标高三数学对数与对数函数、反比例函数与幂函数专项训练(河北) 题型:解答题
已知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是关于x的方程f(x)-g(x)=0的一个解,求t的值;
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值范围;
查看答案和解析>>
科目:高中数学 来源:2013届新课标高三配套第四次月考文科数学试卷(解析版) 题型:解答题
已知函数f(x)=
x3+
x2-ax-a,x∈R,其中a>0.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围;
(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是关于x的方程f(x)-g(x)=0的一个解,求t的值;
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com