精英家教网 > 高中数学 > 题目详情

【题目】某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获得利润分别为4万元、3万元,则该企业每天可获得最大利润为万元

原料限额

A(吨)

2

5

10

B(吨)

6

3

18

【答案】13
【解析】解:设每天生产甲乙两种产品分别为x,y吨,利润为z元, 则
目标函数为 z=4x+3y.
作出二元一次不等式组所表示的平面区域(阴影部分)即可行域.
由z=4x+3y得y=﹣
平移直线y=﹣ x+ ,由图象可知当直线y=﹣ x+ 经过点A时,直线的截距最大,
此时z最大,
解方程组 ,解得:A( ),
∴zmax=4x+3y=10+3=13.
则每天生产甲乙两种产品分别为2.5,1吨,能够产生最大的利润,最大的利润是13万元.
所以答案是:13.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数列{an}中,已知对任意n∈N* , a1+a2+a3+…+an=3n﹣1,则a12+a22+a32+…+an2等于(
A.(3n﹣1)2
B.
C.9n﹣1
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了考查培育的某种植物的生长情况,从试验田中随机抽取100柱该植物进行检测,得到该植物高度的频数分布表如下:

组序

高度区间

频数

频率

1

[230,235)

14

0.14

2

[235,240)

0.26

3

[240,245)

0.20

4

[245,250)

30

5

[250,255)

10

合计

100

1.00

(Ⅰ)写出表中①②③④处的数据;
(Ⅱ)用分层抽样法从第3、4、5组中抽取一个容量为6的样本,则各组应分别抽取多少个个体?
(Ⅲ)在(Ⅱ)的前提下,从抽出的容量为6的样本中随机选取两个个体进行进一步分析,求这两个个体中至少有一个来自第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的三内角A、B、C成等差数列,sinA、sinB、sinC成等比数列,则这个三角形的形状是(
A.直角三角形
B.钝角三角形
C.等腰直角三角形
D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=﹣2,an+1=2an+4.
(1)证明数列{an+4}是等比数列并求出{an}通项公式;
(2)若 ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2﹣(m+ )x+1
(1)当m=2时,解不等式f(x)≤0
(2)若m>0,解关于x的不等式f(x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的最小值;

(2)若函数上单调,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若把连续掷两次骰子分别得到的点数m、n作为点P的坐标,则点P落在圆x2+y2=25外的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+ px﹣p+1=0(p∈R)两个实根. (Ⅰ)求C的大小
(Ⅱ)若AB=3,AC= ,求p的值.

查看答案和解析>>

同步练习册答案