精英家教网 > 高中数学 > 题目详情
设函数f(x,y)=(1+
m
y
)x(m>0,y>0)

(1)当m=3时,求f(6,y)的展开式中二项式系数最大的项;
(2)若f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
且a3=32,求
4
i=0
ai
分析:(1)当m=3时,根据f(6,y)=(1+
3
y
)
6
,故展开式中二项式系数最大的项是第4项.
(2)f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
=(1+
m
y
)4
,由 a3=C43m3=32,可得m值,从而求得
4
i=0
ai
 的值.
解答:解:(1)当m=3时,求f(6,y)=(1+
3
y
)
6
,展开式中二项式系数最大的项是第4项:
C
3
6
(
3
y
)3=
540
y3

(2)f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
=(1+
m
y
)4

∵a3=C43m3=32,∴m=2,
4
i=0
ai=(1+
2
1
)4=81
点评:本题考查二项式系数的定义,求二项式展开项中的某一项,求出m的值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x,y)=(1+
m
y
)x(m>0,y>0)

(1)当m=3时,求f(6,y)的展开式中二项式系数最大的项;
(2)若f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
且a3=32,求
4
i=0
ai

(3)设n是正整数,t为正实数,实数t满足f(n,1)=mnf(n,t),求证:f(2010,1000
t
)>3f(-2010,t)

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=
-x2-2x+15
,集合A={x|y=f(x)},B={y|y=f(x)},则右图中阴影部分表示的集合为(  )
A、[0,3]
B、(0,3)
C、(-5,0]∪[3,4)
D、[-5,0)∪(3,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•湖北模拟)设函数f(x)=
a
b
+m+m
a
=(2,-cosωx)
b
=(sinωx,-2)
(其中ω>0,m∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为2.
(1)求ω;
(2)若f(x)在区间[8,16]上最大值为3,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x,y)=(1+
m
y
)x(m>0,y>0)

(1)当m=3时,求f(6,y)的展开式中二项式系数最大的项;
(2)若f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
且a3=32,求
4


i=0
ai

查看答案和解析>>

同步练习册答案