已知函数
·
(其中
>o),且函数
的最小正周期为![]()
(I)求f(x)的最大值及相应x的取值
(Ⅱ)将函数y= f(x)的图象向左平移
单位长度,再将所得图象各点的横坐标缩小为原来的
倍(纵坐标不变)得到函数y=g(x)的图象.求函数g(x)的单调区间.
科目:高中数学 来源: 题型:
(2)已知af(x)+bf(
)=cx(a、b、c∈R,ab≠0,a2≠b2),求f(x);
(3)f(x)是R上的奇函数,且x∈(-∞,0)时,f(x)=x2+2x,求f(x);
(4)某工厂生产一种机器的固定成本为5 000元,且每生产100部,需要增加投入2 500元,对销售市场进行调查后得知,市场对此产品的需求量为每年500部,已知销售收入的函数为H(x)=500x-
x2,其中x是产品售出的数量,且0≤x≤500.若x为年产量,y表示利润,求y=f(x)的解析式.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)试确定f(x)的解析式.
(2)如果数列{an}满足:a1=3,an+1=f(an)(n∈N*),求{an}的通项公式.
(3)试探求形如f(x)的有理函数g(x)(异于f(x)),使得当数列{bn}满足:b1=3,bn+1=g(bn)时,总有b2n-1=a2n-1(n∈N*),并写出两个符合条件的函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知函数
,
,其中m∈R.
(1)若0<m≤2,试判断函数f (x)=f1 (x)+f2 (x)
的单调性,并证明你的结论;
(2)设函数
若对任意大于等于2的实数x1,总存在唯一的小于2的实数x2,使得g (x1) = g (x2) 成立,试确定实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省温州市高三八校联考理科数学 题型:填空题
已知函数
,
,其中a为常数,且函数y=f(x)和y=g(x)的图像在其与两坐标轴的交点处的切线相互平行.若关于x的不等式
对任意不等于1的正实数都成立,则实数m的取值集合是____________。
查看答案和解析>>
科目:高中数学 来源:2012-2013学年四川省成都市高新区高三(上)12月统考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com