精英家教网 > 高中数学 > 题目详情

公安部交管局修改后的酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其判断标准是驾驶人员每100毫升血液中的酒精含量X毫克,当20≤X<80时,认定为酒后驾车;当X≥80时,认定为醉酒驾车,重庆市公安局交通管理部门在对G42高速路我市路段的一次随机拦查行动中,依法检测了200辆机动车驾驶员的每100毫升血液中的酒精含量,酒精含量X(单位:毫克)的统计结果如下表:

X
[0,20)
[20,40)
[40,60)
[60,80)
[80,100)
[100,+∞)
人数
t
1
1
1
1
1
依据上述材料回答下列问题:
(1)求t的值;
(2)从酒后违法驾车的司机中随机抽取2人,求这2人中含有醉酒驾车司机的概率.

(1)195(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

下表中有三个游戏规则,袋子中分别装有大小相同的球,从袋子中取球,分别计算甲获胜的概率,说明哪个游戏是公平的?

游戏1
 
游戏2
 
游戏3
 
1个红球和1个白球
 
2个红球和2个白球
 
3个红球和1个白球
 
取1个球
 
取1个球,再取1个球
 
取1个球,再取1个球
 
取出的球是红球→甲胜
 
取出的两个球同色→甲胜
 
取出的两个球同色→甲胜
 
取出的球是白球→乙胜
 
取出的两个球不同色→乙胜
 
取出的两个球不同色→乙胜
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某城市随机抽取一年(365天)内100天的空气质量指数API的监测数据,结果统计如下:

API







空气质量


轻微污染
轻度污染
中度污染
中重度污染
重度污染
天数
4
13
18
30
9
11
15
(1)若某企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为w)的关系式为:
,试估计在本年度内随机抽取一天,该天经济损失S大于200元且不超过600元的概率;
(2)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染完成下面列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关?
附:



















 
非重度污染
重度污染
合计
供暖季
 
 
 
非供暖季
 
 
 
合计
 
 
100
 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

现有7道题,其中5道甲类题,2道乙类题,张同学从中任取2道题解答.试求:
(1)所取的两道题都是甲类题的概率;
(2)所取的两道题不是同一类题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

袋子中放有大小和形状相同的小球若干,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个,已知从袋子中随机抽取1个小球,取到标号为2的小球的概率是.
(1)求n的值;
(2)从袋子中不放回地随机抽取2个球,记第一次取出小球标号为a,第二次取出的小球标号为b.①记“ab=2”为事件A,求事件A的概率;
②在区间[0,2]内任取2个实数xy,求事件“x2y2>(ab)2恒成立”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了参加2013年市级高中篮球比赛,该市的某区决定从四所高中学校选出人组成男子篮球队代表所在区参赛,队员来源人数如下表:

学校
学校甲
学校乙
学校丙
学校丁
人数




该区篮球队经过奋力拼搏获得冠军,现要从中选出两名队员代表冠军队发言.
(Ⅰ)求这两名队员来自同一学校的概率;
(Ⅱ)设选出的两名队员中来自学校甲的人数为,求随机变量的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

袋内装有6个球,这些球依次被编号为1、2、3、……、6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).
(1)从袋中任意取出一个球,求其重量大于其编号的概率;
(2)如果不放回地任意取出2个球,求它们重量相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某居民小区有两个相互独立的安全防范系统(简称系统)AB,系统AB在任意时刻发生故障的概率分别为p.
(1)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;
(2)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球,这些球除颜色外完全相同.每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖(每次游戏结束后将球放回原箱).
(1)求在1次游戏中:
①摸出3个白球的概率;②获奖的概率.
(2)求在两次游戏中获奖次数X的分布列及数学期望E(X).

查看答案和解析>>

同步练习册答案