精英家教网 > 高中数学 > 题目详情
已知各项均为正数的数列{an}满足:在n∈N*且n>1时,有=1,a1=.

(1)求数列{an}的通项公式;

(2)证明在n≥5时,an.

〔参考公式:12+22+32+…+n2=n(n+1)(2n+1)(n∈N*)〕

解:(1)由已知有(n∈N*且n>1),又a12=6,

∴an2=(an2-an-12)+(an-12-an-22)+…+(a22-a12)+a12=6[n2+(n-1)2+…+22+12]=n(n+1)(2n+1)(n∈N*,n>1).

又a12=6满足上式,∴,n∈N*.

(2)要证原式成立,只需证明n(n+1)(2n+1)≤n·2n+1+2n-4n-2,即只需证明n(n+1)(2n+1)≤(2n-2)(2n+1),即只需证明n(n+1)≤2n-2,即只需证明n2+n+2≤2n(n≥5),

因为2n=(1+1)n=,

又因为n≥5,故2n=n2+n+2.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较数学公式数学公式的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:青岛二模 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较
Tn+1+12
4Tn
2log2bn+1+2
2log2bn-1
的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:《第2章 数列》、《第3章 不等式》2010年单元测试卷(陈经纶中学)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

科目:高中数学 来源:2012年高考复习方案配套课标版月考数学试卷(二)(解析版) 题型:解答题

已知各项均为正数的数列{an}满足an+12=2an2+anan+1,a2+a4=2a3+4,其中n∈N*
(Ⅰ)求数{an}的通项公式;
(Ⅱ)设数{bn}的前n项和Tn,令bn=an2,其中n∈N*,试比较的大小,并加以证明.

查看答案和解析>>

同步练习册答案