精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)若函数f(x)在x=1,x=处取得极值,求a,b的值;
(Ⅱ)若f'(1)=2,函数f(x)在(0,+∞)上是单调函数,求a的取值范围.
解:(Ⅰ)∵f'(x)=2a﹣+

可得
(Ⅱ)函数f(x)的定义域是(0,+∞),
因为f'(1)=2,所以b=2a﹣1.
所以f'(x)==
要使f(x)在(0,+∞)上是单调函数,只要f'(x)≥0或f'(x)≤0在(0,+?)上恒成立.
当a=0时,f'(x)=>0恒成立,所以f(x)在(0,+?)上是单调函数;  
当a<0时,令f'x)=0,得x1=﹣1,x2==1﹣>1,
此时f(x)在(0,+∞)上不是单调函数;          
当a>0时,要使f(x)在(0,+∞)上是单调函数,只要1﹣2a≥0,即0<a≤
综上所述,a的取值范围是a∈[0,].
练习册系列答案
相关习题

科目:高中数学 来源:2014届湖北孝感高中高三年级九月调研考试理科数学试卷(解析版) 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省高三上学期10月月考文科数学卷 题型:选择题

已知函数的定义域为,部分函数值如表所示,其导函数的图象如图所示,若正数满足,则的取值范围是(  )

-3

0

6

1

1

 

 

 

 

 

A.            B.           C.    D.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分

)已知函数                                       ,(>0),若函

    数的最小正周期为

(1)求的值,并求函数的最大值;

(2)若0<x<,当f(x)=时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.

我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.

我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案