精英家教网 > 高中数学 > 题目详情
如图,FD垂直于矩形ABCD所在平面,CE∥DF,∠DEF=90°.
(Ⅰ)求证:BE∥平面ADF;
(Ⅱ)若矩形ABCD的一个边AB=
3
,EF=2
3
,则另一边BC的长为何值时,三棱锥F-BDE的体积为
3
分析:(I)过点E作EM∥CD,交FD于M,连接AM,可得四边形CEMD是平行四边形.结合题意得AB∥EM且AB=EM,所以四边形ABEM是平行四边形,得BE∥AM,从而得到BE∥平面ADF;
(II)算出Rt△DEF中DE、DF的长,从而得到Rt△DEF的面积.再以B为顶点、△DEF为底面,得VB-DEF=
1
3
S△DEF×BC,用等体积转换得VB-DEF=VF-BDE=
3
,从而算出BC的长,得当BC=
3
2
时,三棱锥F-BDE的体积为
3
解答:解:(I)过点E作EM∥CD,交FD于M,连接AM
∵CE∥DF,EM∥CD,∴四边形CEMD是平行四边形.
由此可得EM∥CD且EM=CD
∵AB∥CD且AB=CD,∴AB∥EM且AB=EM,
得四边形ABEM是平等四边形,∴BE∥AM,
∵BE?平面ADF,AM?平面ADF,
∴BE∥平面ADF;
(II)由EF=2
3
,EM=AB=
3
,得FM=3且∠EFM=30°
由∠DEF=90°,可得FD=4,从而DE=2
∵BC⊥CD,BC⊥DF,CD∩DF=D,∴BC⊥平面CDEF
∴VF-BDE=VB-DEF=
1
3
S△DEF×BC
∵S△DEF=
1
2
×DE×EF=2
3
,VF-BDE=
3

∴BC=
3VF-BDE
S △DEF
=
3
2

综上所述,当BC=
3
2
时,三棱锥F-BDE的体积为
3
点评:本题给出特殊四棱锥,求证线面平行并且求锥体的体积,着重考查了线面平行、垂直的判定与性质和锥体体积公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,FD垂直于矩形ABCD所在平面,CE∥DF,∠DEF=90°.
(1)求证:BE∥平面ADF;
(2)若矩形ABCD的一个边AB=3,另一边BC=2
3
,EF=2
3
,求几何体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省西安市高三下学期第一次模拟考试理科数学 题型:解答题

(本小题满分12分)

如图,FD垂直于矩形ABCD所在平面,CE//DF,

 

 

(Ⅰ)求证:BE//平面ADF;

(Ⅱ)若矩形ABCD的一个边AB =,EF =,则另一边BC的长为何值时,二面角B-EF-D的大小为450

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年陕西省西安市五校联考高三第一次模拟考试理科数学 题型:解答题

(本小题满分12分)

如图,FD垂直于矩形ABCD所在平面,CE//DF,

(Ⅰ)求证:BE//平面ADF;

(Ⅱ)若矩形ABCD的一个边AB =,EF =,则另一边BC的长为何值时,二面角B-EF-D的大小为450?

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010届江西省高三年级数学热身卷(文科) 题型:解答题

如图,FD垂直于矩形ABCD所在平面,CE//DF, ∠DEF=900

(1)求证:BE//平面ADF;

(2)若矩形ABCD的一个边AB=3, 另一边BC=2,EF=2,求几何体ABCDEF的体积。

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案