分析 (1)设f(x)=ax2+bx+c,由f(0)=3得c=3,由f(x+1)-f(x)=2x+3,得2ax+a+b=2x+3,解方程组求出a,b的值,从而求出函数的解析式;
(2)g(x)=f(x)-kx=x2+(2-k)x+3的图象是开口朝上,且以直线x=$\frac{k-2}{2}$为对称轴的抛物线,分类讨论给定区间与对称轴的关系,可得不同情况下ϕ(k)的表达式.
解答 解:设f(x)=ax2+bx+c,由f(0)=3得c=3,
故f(x)=ax2+bx+3.
因为f(x+1)-f(x)=2x+3,
所以a(x+1)2+b(x+1)+3-(ax2+bx+3)=2x+3.
即2ax+a+b=2x+3,
∴$\left\{\begin{array}{l}2a=2\\ a+b=3\end{array}\right.$,
解得:a=1,b=2,
∴f(x)=x2+2x+3…4分;
(2)g(x)=f(x)-kx=x2+(2-k)x+3的图象是开口朝上,且以直线x=$\frac{k-2}{2}$为对称轴的抛物线,
当$\frac{k-2}{2}$<0,即k<2时,当x=0时,g(x)取最小值3;
当0≤$\frac{k-2}{2}$≤2,即2≤k≤6时,当x=$\frac{k-2}{2}$时,g(x)取最小值$\frac{-{k}^{2}+4k+8}{4}$;
当$\frac{k-2}{2}$>2,即k>6时,当x=2时,g(x)取最小值11-2k;
综上可得:ϕ(k)=$\left\{\begin{array}{l}3,k<2\\ \frac{-{k}^{2}+4k+8}{4},2≤k≤6\\ 11-2k,k>6\end{array}\right.$,…12分.
点评 本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 0 | C. | $\frac{8}{9}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com