精英家教网 > 高中数学 > 题目详情
15.已知一个正四面体纸盒的棱长为$2\sqrt{6}$,若在该正四面体纸盒内放一个正方体,使正方体可以在纸盒内任意转动,则正方体棱长的最大值为(  )
A.1B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

分析 在一个棱长为$2\sqrt{6}$的正四面体纸盒内放一个正方体,并且能使正方体在纸盒内任意转动,说明正方体在正四面体的内切球内,求出内切球的直径,就是正方体的对角线的长,然后求出正方体的棱长

解答 解:设球的半径为:r,由正四面体的体积得:
4×$\frac{1}{3}$×r×$\frac{\sqrt{3}}{4}$×($2\sqrt{6}$)2=$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$×($2\sqrt{6}$)2×$\sqrt{(2\sqrt{6})^{2}-(\frac{2}{3}•\frac{\sqrt{3}}{2}•2\sqrt{6})^{2}}$,
所以r=1,
设正方体的最大棱长为a,
∴3a2=22
∴a=$\frac{2\sqrt{3}}{3}$.
故选:B

点评 本题是中档题,考查正四面体的内接球的知识,球的内接正方体的棱长的求法,考查空间想象能力,转化思想,计算能力

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设奇函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式$\frac{f(x)+2f(-x)}{x}$<0的解集为(  )
A.(-∞,-2)∪(0,2)B.(-∞,-2)∪(2,+∞)C.(-2,0)∪(0,2)D.(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则当CQ∈(0,$\frac{1}{2}$]∪{1}时,S为四边形;当CQ=$\frac{1}{2}$时S为等腰梯形;当CQ=1时,S的面积为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,角A,B,C所对的边分别是a,b,c,且A,B,C成等差数列,
(1)若a=1,b=$\sqrt{3}$,求sinC;
(2)若a,b,c成等差数列,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知An={x|2n<x<2n+1,x=3m,m∈N+},若|An|表示集合An中元素的个数则|A1|+|A2|+|A3|+…+|A10|=682.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.i为虚数单位,复数$\frac{i}{i+1}$在复平面内对应的点到原点的距离为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.奇函数f(x)对任意x∈R都有f(x+2)=f(-x)成立,且f(1)=6,则f(2014)+f(2015)+f(2016)的值为(  )
A.-6B.0C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y)+1,若f(1)=2,则f(4)=(  )
A.5B.7C.9D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{{x}^{2}}{ax+b}$(a,b为常数),且方程f(x)=x-12有两个实根为x1=3,x2=4.
(1)求函数f(x)的解析式;
(2)设k>2,解关于x的不等式:f(x)<$\frac{(k+1)x-k}{2-x}$.

查看答案和解析>>

同步练习册答案