精英家教网 > 高中数学 > 题目详情
6.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则当CQ∈(0,$\frac{1}{2}$]∪{1}时,S为四边形;当CQ=$\frac{1}{2}$时S为等腰梯形;当CQ=1时,S的面积为$\frac{\sqrt{6}}{2}$.

分析 当CQ=1时,截面四边形是边长为$\frac{\sqrt{5}}{2}$的菱形,由此可求其面积.

解答 解:当CQ=1时,截面四边形是边长为$\frac{\sqrt{5}}{2}$的菱形,其对角线长为正方体的对角线长$\sqrt{3}$,另一条对角线长为面对角线长为$\sqrt{2}$,所以S=$\frac{1}{2}×\sqrt{2}×\sqrt{3}$=$\frac{\sqrt{6}}{2}$,
故答案为:$\frac{\sqrt{6}}{2}$.

点评 此题考查了截面的性质,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的任意一点.
(1)求证:平面PAC⊥平面PBC;
(2)若PA=4,AB=6,∠ABC=30°.
①求AC与PB所成角的正切值;
②求直线AC与平面PCB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=log3x,x∈[3,27],g(x)=f2(x)-2m•f(x)+3的最小值为h(m).
(1)求h(m);
(2)是否存在实数a,b,同时满足下列条件:
①b<a<1
②当h(m)的定义域为[b,a]时,值域为[b2,a2],若存在,求出a和b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数y=loga(1-ax)在区间[1,2]单调增,则a的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将函数y=sin(2x-θ)的图象F向右平移$\frac{π}{3}$个单位长度得到图象F′,若F′的一条对称轴是直线x=$\frac{π}{4}$,则θ的一个可能取值是(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在三棱柱ABC-A1B1C1中,△ABC是边长为2正三角形,D、E分别是线段BB1、AC1的中点,DE⊥AC1
(1)求证:DE⊥平面AA1C1C;
(2)若AA1C1C是矩形,BB1=4,求直线BB1与平面ADC1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图所示的程序框图,运行相应的程序,若输入x的值为-4,则输出y的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知一个正四面体纸盒的棱长为$2\sqrt{6}$,若在该正四面体纸盒内放一个正方体,使正方体可以在纸盒内任意转动,则正方体棱长的最大值为(  )
A.1B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=$\frac{a-1{0}^{x}}{1+a•1{0}^{x}}$为奇函数,则实数a=1或-1.

查看答案和解析>>

同步练习册答案