精英家教网 > 高中数学 > 题目详情
16.如图,由曲线y=sinx,直线x=$\frac{3}{2}$π与x轴非负半轴围成的阴影部分面积是3.

分析 根据定积分的几何意义,阴影部分的面积需要分成两段,即S=${∫}_{0}^{π}$sinxdx+${∫}_{π}^{\frac{3π}{2}}$(-sinx)dx=3.

解答 解:当x∈[0,π]时,f(x)=sinx≥0,
当x∈[π,$\frac{3π}{2}$]时,f(x)=sinx≤0,
根据定积分的几何意义,阴影部分的面积需要分成两段,
即S=S1+S2
=${∫}_{0}^{π}$sinxdx+${∫}_{π}^{\frac{3π}{2}}$(-sinx)dx
=-cosx${|}_{0}^{π}$+cosx${|}_{π}^{\frac{3π}{2}}$
=2+1=3,
故答案为:3.

点评 本题主要考查了定积分的几何意义,即曲线围成面积的求解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知点P(x,y)在圆x2+y2-6x-6y+14=0上.
(1)求$\frac{y}{x}$的最大值和最小值;
(2)求x2+y2+2x+3的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.集合A={3,|a|},B={a,1},若A∩B={2},则A∪B=(  )
A.{0,1,3}B.{1,2,3}C.{0,1,2,3}D.{1,2,3,-2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)对于任意的a,b∈R均有f(a+b)=f(a)+f(b)-1,且当x>0时,f(x)>1成立.
(1)求证为R上的增函数;
(2)若$f({\sqrt{m}})+f({\sqrt{m}•x})>f({{x^2}-1})+1$对一切满足$\frac{1}{16}≤m≤\frac{1}{4}$的m恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一条弦的长等于半径,则这条弦所对的圆心角是____弧度.(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一次函数的图象过点(2,0),和(-2,1),则此函数的解析式为y=$-\frac{1}{4}x$$+\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列四个命题:①α∈(0,$\frac{π}{2}$)时,sinα+cosα>1;②α∈($\frac{π}{2}$,π)时,若sinα+cosα<0,则|cosα|>|sinα|;③对任意的向量,必有|$\overrightarrow{a}$+$\overrightarrow{b}$|≤|$\overrightarrow{a}$|+|$\overrightarrow{b}$|;④若$\overrightarrow{a}$≠$\overrightarrow{0}$,$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{a}$•$\overrightarrow{c}$,则$\overrightarrow{b}$=$\overrightarrow{c}$,正确的序号为①②③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数$f(x)=\left\{{\begin{array}{l}{-x-4,x<0}\\{{x^3},x≥0}\end{array}}\right.$的图象与函数g(x)=ln(x+2)的图象的交点个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}满足a1=a,an+1an-an2=1(n∈N*
(I)若a3=$\frac{5}{2}$,求实数a的值;
(Ⅱ)设bn=$\frac{{a}_{n}}{\sqrt{n}}$(n∈N*).若a=1,求证$\sqrt{2}$≤bn<$\frac{3}{2}$(n≥2,n∈N*).

查看答案和解析>>

同步练习册答案