精英家教网 > 高中数学 > 题目详情
(本小题满分10分)
设函数
(I)若当时,不等式恒成立,求实数m的取值范围;
(II)若关于x的方程在区间[1,3]上恰好有两个相异的实根,求实数的取值范围.
解:(1)   (2)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,某市拟在道路的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数y=(A>0,>0,),x∈[-3,0]的图象,且图象的最高点为B(-1,);赛道的中间部分为千米的水平跑到CD;赛道的后一部分为以O圆心的一段圆弧

(1)求的值和∠DOE的值;
(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图所示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记∠POE=,求当“矩形草坪”的面积最大时的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)若存在实数,使得函数对其定义域上的任意实数分别满足,则称直线的“和谐直线”.已知为自然对数的底数);
(1)求的极值;
(2)函数是否存在和谐直线?若存在,求出此和谐直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(1)求的单调区间;
(2)当时,若方程上有两个实数解,求实数t的取值范围;
(3)证明:当m>n>0时,.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=In(1+x)-+(≥0)。
(1)当=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的单调减区间为                 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x=2是函数的一个极值点.(Ⅰ)求;(Ⅱ)求函数的单调区间;(Ⅲ)若直线与函数的图像有个交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
①若曲线在x=0处与直线x+y= 6相切,求a,b的值;
②设时,在x=0处取得最大值,求实数a的取值范围.

查看答案和解析>>

同步练习册答案