精英家教网 > 高中数学 > 题目详情
已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.
(1)求动点C的轨迹E的方程;
(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.
(1)=1(x≠±4)
(2)16
(1)由题意知|CA|+|CB|=12-4=8>|AB|,所以C的轨迹E为椭圆的一部分.
由a=4,c=2,可得b2=12.
故曲线E的方程为=1(x≠±4).
(2)设两直线的方程为y=kx与y=-kx(k>0).记y=kx与曲线E在第一象限内的交点为(x0,y0),由,可得x02
结合图形的对称性可知:四交点对应的四边形为矩形,且其面积S=2x0·2y0=4kx02
因为k>0,所以S==16 (当且仅当k=时取等号).故四边形面积的最大值为16
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的短轴长为,且斜率为的直线过椭圆的焦点及点
(1)求椭圆的方程;
(2)已知直线过椭圆的左焦点,交椭圆于点P、Q.
(ⅰ)若满足为坐标原点),求的面积;
(ⅱ)若直线与两坐标轴都不垂直,点轴上,且使的一条角平分线,则称点为椭圆的“特征点”,求椭圆的特征点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A,B分别为椭圆=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距.
(1)求椭圆的方程;
(2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面直角坐标系中,已知A(-2,0),B(2,0),C(1,0),P是x轴上任意一点,平面上点M满足:
PM
PB
CM
CB
对任意P恒成立,则点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.

(1)求椭圆的离心率;
(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是 ,求此时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为(  )
A.=1B.=1
C.=1D.=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率为.斜率为的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.
(1)求椭圆的方程;
(2)求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

[2014·焦作模拟]已知F1,F2是椭圆的两个焦点,椭圆上存在一点P,使∠F1PF2=60°,则椭圆离心率的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从椭圆短轴的一个端点看长轴的两个端点的视角为,那么此椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案