精英家教网 > 高中数学 > 题目详情
已知椭圆过点,且离心率为.斜率为的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.
(1)求椭圆的方程;
(2)求的面积.
(1) ; (2)

试题分析:(1)根据题意可列方程组,进而可求解的值.
(2) 设直线l的方程为.联立直线与椭圆的方程可得:,①    
利用,因此要先确定直线AB的方程和点P到直线AB的距离.设A、B的坐标分别为AB中点为E,则
因为AB是等腰△的底边,所以PE⊥AB.所以PE的斜率,解得m=2. 
此时方程①为,解得,所以,所以|AB|=. 此时,点P(-3,2)到直线AB:的距离,所以S=.
(1)由已知得.         ( 2分)
解得.又,所以椭圆G的方程为.   (4分)
(2)设直线l的方程为.
. ①             6分
设A、B的坐标分别为AB中点为E
. ( 8分),
因为AB是等腰△的底边,
所以PE⊥AB.所以PE的斜率,解得m=2.     ( 10分)
此时方程①为,解得,所以,所以|AB|=. 此时,点P(-3,2)到直线AB:的距离, 所以△的面积S=.     (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

直线y=kx+b与曲线交于A、B两点,记△AOB的面积为S(O是坐标原点).
(1)求曲线的离心率;
(2)求在k=0,0<b<1的条件下,S的最大值;
(3)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC的周长为12,顶点A,B的坐标分别为(-2,0),(2,0),C为动点.
(1)求动点C的轨迹E的方程;
(2)过原点作两条关于y轴对称的直线(不与坐标轴重合),使它们分别与曲线E交于两点,求四点所对应的四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设e是椭圆=1的离心率,且e∈(,1),则实数k的取值范围是(  )
A.(0,3)B.(3,)
C.(0,3)∪(,+∞)D.(0,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过抛物线的焦点的直线与抛物线交于两点,且为坐标原点)的面积为,则=                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图5,为坐标原点,双曲线和椭圆均过点,且以的两个顶点和的两个焦点为顶点的四边形是面积为2的正方形.
(1)求的方程;
(2)是否存在直线,使得交于两点,与只有一个公共点,且?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知对,直线与椭圆恒有公共点,则实数的取值范围是(  )
A.(0, 1)B.(0,5)C.[1,5)D.[1,5)∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直线 和椭圆,椭圆C的离心率为,连结椭圆的四个顶点形成四边形的面积为.
(1)求椭圆C的方程;
(2)若直线与椭圆C有两个不同的交点,求实数m的取值范围;
(3)当时,设直线与y轴的交点为P,M为椭圆C上的动点,求线段PM长度的最大值.

查看答案和解析>>

同步练习册答案