精英家教网 > 高中数学 > 题目详情
直线y=kx+b与曲线交于A、B两点,记△AOB的面积为S(O是坐标原点).
(1)求曲线的离心率;
(2)求在k=0,0<b<1的条件下,S的最大值;
(3)当|AB|=2,S=1时,求直线AB的方程.
(1)离心率.(2)当时, S取到最大值1.
(3)

试题分析:(1)转化成标准方程,明确曲线为椭圆,,进一步得到椭圆的离心率.
(2)设点A的坐标为,点B的坐标为,由,解得
将面积用b表示.
(3)由,应用弦长公式,得到|AB|=
根据O到AB的距离得到代入上式并整理,解得k,b.
试题解析:(1)曲线的方程可化为:
∴此曲线为椭圆,
∴此椭圆的离心率.          4分
(2)设点A的坐标为,点B的坐标为
,解得,             6分
所以
当且仅当时, S取到最大值1.           8分
(3)由, 
                      ①
|AB|=        ②
又因为O到AB的距离,所以  ③
③代入②并整理,得
解得,,代入①式检验,△>0 ,
故直线AB的方程是 
.          14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆C∶=1(a>b>0)过点(0,4),离心率为.
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的短轴长为,且斜率为的直线过椭圆的焦点及点
(1)求椭圆的方程;
(2)已知直线过椭圆的左焦点,交椭圆于点P、Q.
(ⅰ)若满足为坐标原点),求的面积;
(ⅱ)若直线与两坐标轴都不垂直,点轴上,且使的一条角平分线,则称点为椭圆的“特征点”,求椭圆的特征点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若动点P(x1,y1)在曲线y=2x2+1上移动,则点P与点(0,-l)连线中点的轨迹方程为(  )
A.y=2x2B.y=4x2C.y=6x2D.y=8x2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面直角坐标系中,已知A(-2,0),B(2,0),C(1,0),P是x轴上任意一点,平面上点M满足:
PM
PB
CM
CB
对任意P恒成立,则点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(-2,0),B(1,0),平面内的动点P满足|PA|=λ|PB|(λ为常数,λ>0).
(1)求点P的轨迹E的方程,并指出其表示的曲线的形状.
(2)当λ=2时,P的轨迹E与x轴交于C、D两点,M是轨迹上异于C、D的任意一点,直线l:x=-3,直线CM与直线l交于点C′,直线DM与直线l交于点D'.求证:以C′D′为直径的圆总过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点为F(0,1),离心率,则该椭圆的标准方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率为.斜率为的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.
(1)求椭圆的方程;
(2)求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从椭圆短轴的一个端点看长轴的两个端点的视角为,那么此椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案