精英家教网 > 高中数学 > 题目详情
已知椭圆的一个焦点为F(0,1),离心率,则该椭圆的标准方程为
A.B.C.D.
A

试题分析:由题意得,椭圆的焦点在轴上,标准方程为,且,即椭圆的标准方程为.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆C:的离心率,右焦点到直线1的距离,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线y=kx+b与曲线交于A、B两点,记△AOB的面积为S(O是坐标原点).
(1)求曲线的离心率;
(2)求在k=0,0<b<1的条件下,S的最大值;
(3)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面直角坐标系中,已知两点A(3,1),B(-1,3),若点C满足
OC
1
OA
2
OB
(O为原点),其中λ1,λ2∈R,且λ12=1,则点C的轨迹是(  )
A.直线B.椭圆C.圆D.双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:⊙M的方程为x2+(y-2)2=1,Q点是x轴上的动点,QA、QB分别切⊙M于A、B.
(1)求弦AB中点P的轨迹方程;
(2)若|AB|>
4
2
3
,求点Q的横坐标xQ的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

分别是椭圆的左、右焦点,过的直线交椭圆于两点,若,则椭圆的离心率为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题正确的有___________
①已知A,B是椭圆的左右两个顶点, P是该椭圆上异于A,B的任一点,则
②已知双曲线的左顶点为A1,右焦点为F2,P为双曲线右支上一点,则的最小值为-2.
③若抛物线:的焦点为,抛物线上一点和抛物线内一点,过点Q作抛物线的切线,直线过点且与垂直,则平分
④已知函数是定义在R上的奇函数,, 则不等式的解集是

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案