精英家教网 > 高中数学 > 题目详情
已知:⊙M的方程为x2+(y-2)2=1,Q点是x轴上的动点,QA、QB分别切⊙M于A、B.
(1)求弦AB中点P的轨迹方程;
(2)若|AB|>
4
2
3
,求点Q的横坐标xQ的取值范围.
(1)连接MA、MQ,则M、P、Q三点共线,MA⊥AQ于P.
设P(x,y),其中-1<x<1,1<y<2,Q(xQ,0)∵|AM|2=|MP|•|MQ|
(x-0)2+(y-2)2
(xQ-0)2+(0-2)2
=1

x2+(y-2)2
(
xQ2
+4)
=1

又当x0≠0时,∵KMP=KMO
y-2
x-0
=
0-2
xQ-0
xQ=
-2x
y-2

将②式代入①式得:[x2+(y-2)2]•[
4x2
(y-2)2
+4]=1
[x2+(y-2)2]•
x2+(y-2)2
(y-2)2
=
1
4
[x2+(y-2)2]2=
1
4
(y-2)2
x2+(y-2)2=
|y-2|
2

∵y<2x2+(y-2)2=
1
2
(2-y)

x2+y2-
7
2
y+3=0,即x2+(y-
7
4
y)2=
1
16

∵xQ≠0,
∴x≠0
又当xQ=0时,由②知x=0代入①得|y-2|=
1
2

解得y=
3
2
(0,
3
2
)
代入x2+(y-
7
4
)2=
1
16
满足方程,
所以(0,
3
2
)
在所求轨迹上,
所以x2+(y-
7
4
)2=
1
16
(y≠2)
为所求的轨迹方程.
(2)∵|AB|>
4
2
3

|AP|=
1
2
|AB|
2
2
3

|AP|2=|MA|2-|MP|2=1-|MP|2
8
9
1-[(2-y)2+x2]>
8
9
x2+(2-y)2
1
9

由(1)得
1
x2Q
+4
1
9
xQ2+4>9,xQ2>5
∴xQ
5
或xQ<-
5

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个顶点C的轨迹方程,并说明它的轨迹是什么?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知与曲线C:x2+y2-2x-2y+1=0相切的直线l交x轴、y轴于A、B两点,O为原点,且|OA|=a,|OB|=b,(a>2,b>2).
(1)求证:曲线C与直线l相切的条件是(a-2)(b-2)=2;
(2)求线段AB中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1(-5,0),F2(5,0),动点P(x,y)满足|PF1|-|PF2|=10,则动点P的轨迹方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平面直角坐标系中,已知A(-2,0),B(2,0),C(1,0),P是x轴上任意一点,平面上点M满足:
PM
PB
CM
CB
对任意P恒成立,则点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知动圆过定点P(1,0),且与定直线l:x=-1相切;
(1)求动圆圆心M的轨迹方程;
(2)设过点P且斜率为-
3
的直线与曲线M相交于A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点A(-2,0),B(1,0),平面内的动点P满足|PA|=λ|PB|(λ为常数,λ>0).
(1)求点P的轨迹E的方程,并指出其表示的曲线的形状.
(2)当λ=2时,P的轨迹E与x轴交于C、D两点,M是轨迹上异于C、D的任意一点,直线l:x=-3,直线CM与直线l交于点C′,直线DM与直线l交于点D'.求证:以C′D′为直径的圆总过定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的一个焦点为F(0,1),离心率,则该椭圆的标准方程为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设圆(x+1)2+y2=25的圆心为C,A(1,0)是圆内一定点,Q为圆周上任一点.线段AQ的垂直平分线与CQ的连线交于点M,则M的轨迹方程为(  )
A.=1B.=1
C.=1D.=1

查看答案和解析>>

同步练习册答案