精英家教网 > 高中数学 > 题目详情
1.在△ABC中,角A,B,C的对边分别为a,b,c,若B=45°,c=3$\sqrt{2}$,b=2$\sqrt{3}$,求角A.

分析 由已知及正弦定理可得sinC=$\frac{csinB}{b}$=$\frac{\sqrt{3}}{2}$,利用范围C∈(0,π),可求C,根据三角形内角和定理即可求A的值.

解答 解:∵B=$\frac{π}{4}$,c=3$\sqrt{2}$,b=2$\sqrt{3}$,
∴由正弦定理可得:sinC=$\frac{csinB}{b}$=$\frac{3\sqrt{2}×\frac{\sqrt{2}}{2}}{2\sqrt{3}}$=$\frac{\sqrt{3}}{2}$,
∵C∈(0,π),C=$\frac{π}{3}$或$\frac{2π}{3}$.
∴A=π-B-C=$\frac{5π}{12}$或$\frac{π}{12}$.

点评 本题主要考查了正弦定理,大边对大角,三角形内角和定理等知识的综合应用,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=3,G和H分别是CE和CF的中点.
(Ⅰ)求证:平面BDGH∥平面AEF;
(Ⅱ)求二面角H-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$,$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=$±\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知y=f(x)是定义在R上的偶函数,其对任意的x1,x2∈(-∞,0],都使(x2-x1)[f(x2)-f(x1)]<0成立,则当f(sinx)>f(cosx)时,x的取值范围(  )
A.(2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$),k∈ZB.(kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$),k∈Z
C.(2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈ZD.(kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义函数f(x)=$\left\{\begin{array}{l}{1,x∈Q}\\{-1,x∉Q}\end{array}\right.$,则f(f(2016+π))=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an},满足a1=4,an+1=3an-4,(n∈N*),求该数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知全集U={x|x2<16且x∈N},集A={1,2},集B={2,3}则∁UA∩B={3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,正方体ABCD-A1B1C1D1的棱长为1,P对角线BD1的三等分点,P到直线CC1的距离为$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在等腰△ABC中,∠BAC=120°,AB=$\sqrt{3}$,点M在线段BC上.
(1)若AM=1,求BM的长;
(2)若点N在线段MC上,且∠MAN=30°,问:当∠BAM取何值时,△AMN的面积最小?并求出面积的最小值.

查看答案和解析>>

同步练习册答案