精英家教网 > 高中数学 > 题目详情
7.已知曲线C1的极坐标方程为ρ=2sinθ,曲线C2的极坐标方程为θ=$\frac{π}{3}$(ρ∈R),曲线C1,C2相交于点M,N,则弦MN的长为$\sqrt{3}$.

分析 将两曲线极坐标方程化为普通方程,利用点到直线的距离公式求出圆心到直线的距离d,再由半径r的值,利用垂径定理及勾股定理求出MN的长即可.

解答 解:∵ρ=2sinθ,
∴ρ2=2ρsinθ,
又$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,且ρ2=x2+y2
∴x2+y2=2y,即C1:x2+(y-1)2=1;
曲线C2在直角坐标系中是过原点且倾斜角为$\frac{π}{3}$的直线,即C2:y=$\sqrt{3}$x,
∴圆心(0,1)到直线y=$\sqrt{3}$x的距离d=$\frac{1}{2}$,
∵圆的半径r=1,
∴由勾股定理可得,MN=2$\sqrt{{1}^{2}-(\frac{1}{2})^{2}}$=$\sqrt{3}$,
则弦MN的长为$\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 此题考查了简单曲线的极坐标方程,将两曲线方程化为普通方程是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=2cosx,则f′(x)=-2sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=$\frac{1}{2}$PD=1.
(1)证明:平面PQC⊥平面DCQ
(2)求二面角B-PC-Q的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=sinα+cosα\\ y=1+sin2α\end{array}\right.$(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,曲线C2的极坐标方程为ρ=2$\sqrt{2}$acos(θ-$\frac{3π}{4}$)(a>0).
(I)求直线,与曲线C1的交点的极坐标(P,θ)(p≥0,0≤θ<2π).
(Ⅱ)若直线l与C2相切,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.某三棱锥的正视图和侧视图如图所示,则该三棱锥的俯视图的面积为(  )
A.6B.8C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一锥体的三视图如图所示,设该棱锥的最长棱和最短棱的棱长分别为m,n,则$\frac{m}{n}$等于(  )
A.$\frac{\sqrt{33}}{4}$B.$\frac{\sqrt{41}}{3}$C.$\frac{\sqrt{41}}{4}$D.$\frac{\sqrt{33}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,射线l:θ=$\frac{π}{3}$(ρ>0)与⊙O1:(x-1)2+y2=1和⊙O2:x2+(y-2)2=4的交点分别为A,B,则|AB|=(  )
A.2+$\sqrt{3}$B.2$\sqrt{3}$C.2$\sqrt{3}$-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,a=3,b=3$\sqrt{2}$,A=30°,则B=(  )
A.45°B.135°C.45°或135°D.75°或105°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数y=f(x)是定义在R上的奇函数,当x∈(0,2)时,f(x)=lnx+x2+1,则当x∈(-2,0)时,函数f(x)的表达式为f(x)=-ln(-x)-x2 -1.

查看答案和解析>>

同步练习册答案