精英家教网 > 高中数学 > 题目详情

PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确命题的序号是________.

①②③
分析:对于①②③可根据直线与平面垂直的判定定理进行证明,对于④利用反证法进行证明,假设AE⊥面PBC,而AF⊥面PCB,则AF∥AE,显然不成立,从而得到结论.
解答:解:∵PA⊥⊙O所在的平面,BC?⊙O所在的平面
∴PA⊥BC,而BC⊥AC,AC∩PA=A
∴BC⊥面PAC,又∵AF?面PAC,∴AF⊥BC,而AF⊥PC,PC∩BC=C
∴AF⊥面PCB,而BC?面PCB,∴AF⊥BC,故③正确;
而PB?面PCB,
∴AF⊥PB,而AE⊥PB,AE∩AF=A
∴PB⊥面AEF,
而EF?面AEF,AF?面AEF
∴EF⊥PB,AF⊥PB,故①②正确,
∵AF⊥面PCB,假设AE⊥面PBC
∴AF∥AE,显然不成立,故④不正确.
故答案为:①②③.
点评:本题主要考查了直线与平面垂直的判定,以及直线与平面垂直的性质,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,PC与⊙O所在的平面成45°角,E是PC中点.F为PB中点.
(1)求证:EF∥面ABC;
(2)求证:EF⊥面PAC;
(3)求三棱锥B-PAC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,AE⊥PB于E,AF⊥PC于F,
给出下列结论:
①BC⊥面PAC;
②AF⊥面PCB;
③EF⊥PB;
④AE⊥面PBC.   
其中正确命题个数是
3
3
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙O的直径,PA⊥⊙O所在的平面,C是圆上一点,∠ABC=30°,PA=AB.
(Ⅰ)求证:平面PAC⊥平面PBC;
(Ⅱ)求直线PC与平面ABC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知PA⊥⊙O所在的平面,AB是⊙O的直径,AB=2,C是⊙O上一点,且AC=BC,PC与⊙O所在的平面成45°角,E是PC中点,F为PB中点.
(Ⅰ)求证:EF⊥面PAC;
(Ⅱ)求C-ABP的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确命题的序号是
 

查看答案和解析>>

同步练习册答案