¾«Ó¢¼Ò½ÌÍø¸½¼ÓÌ⣺
A£®Èçͼ£¬ËıßÐÎABCDÄÚ½ÓÓÚÔ²O£¬»¡AB=»¡AD£¬¹ýAµãµÄÇÐÏß½»CBµÄÑÓ³¤ÏßÓÚEµã£®
ÇóÖ¤£ºAB2=BE•CD£®
B£®ÉèÊýÁÐ{an}£¬{bn}Âú×ãan+1=3an+2bn£¬bn+1=2bn£¬ÇÒÂú×ã
an+4
bn+4
=M
an
bn
£¬ÊÔÇó¶þ½×¾ØÕóM£®
C£®ÒÑÖªÍÖÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=
12
3cos2¦È+4sin2¦È
£¬µãF1£¬F2ΪÆä×ó¡¢ÓÒ½¹µã£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ
x=2+
2
2
t
y=
2
2
t
£¨tΪ²ÎÊý£¬t¡ÊR£©£®ÇóµãF1£¬F2µ½Ö±ÏßlµÄ¾àÀëÖ®ºÍ£®
D£®ÒÑÖªx£¬y£¬z¾ùΪÕýÊý£®ÇóÖ¤£º
x
yz
+
y
zx
+
z
xy
¡Ý
1
x
+
1
y
+
1
z
£®
·ÖÎö£ºA£ºÁ¬½ÓAC£¬ÒòΪEAÇÐÔ²OÓÚA£¬ËùÒÔ¡ÏEAB=¡ÏACB£®ÒòΪ»¡AB=»¡AD£¬ËùÒÔAB=AD£¬¡ÏEAB=¡ÏACD£¬ÓÖËıßÐÎABCDÄÚ½ÓÓÚÔ²O£¬ËùÒÔ¡÷ABE¡×CDA£®ËùÒÔAB2=BE•CD£®
B£ºÓÉÌâÉèµÃ
an+1
bn+1
=
32
02
an
bn
£¬ÉèA=
32
02
£¬ÔòM=A4£®ÓɾØÕóµÄÔËËã·¨ÔòÄܹ»Çó³ö¶þ½×¾ØÕóMµÄÖµ£®
C£ºÖ±ÏßlÆÕͨ·½³ÌΪy=x-2£»ÇúÏßCµÄÆÕͨ·½³ÌΪ
x2
4
+
y2
3
=1
£®ÓÉ´ËÄܹ»Çó³öµãF1£¬F2µ½Ö±ÏßlµÄ¾àÀëÖ®ºÍ£®
D£ºÒòΪx£¬y£¬z¶¼ÊÇΪÕýÊý£®ËùÒÔ
x
yz
+
y
zx
=
1
z
(
x
y
+
y
x
) ¡Ý
2
z
£¬Í¬Àí¿ÉµÃ
y
zx
+
z
xy
¡Ý
2
x
£¬
z
xy
+
x
yz
¡Ý
2
y
£¬Óɴ˿ɵÃ
x
yz
+
y
zx
+
z
xy
¡Ý
1
x
+
1
y
+
1
z
£®
½â´ð£ºA£®Ö¤£ºÁ¬½ÓAC£¬ÒòΪEAÇÐÔ²OÓÚA£¬ËùÒÔ¡ÏEAB=¡ÏACB£®
ÒòΪ»¡AB=»¡AD£¬ËùÒÔ¡ÏACD=¡ÏACB£¬AB=AD£¬ÓÚÊÇ¡ÏEAB=¡ÏACD£¨5·Ö£©
ÓÖËıßÐÎABCDÄÚ½ÓÓÚÔ²O£¬ËùÒÔ¡ÏABE=¡ÏD£¬ËùÒÔ¡÷ABE¡×CDA£®
ÓÚÊÇ
AB
CD
=
BE
DA
£¬¼´AB•DA=BE•CD£¬ËùÒÔAB2=BE•CD£¨10·Ö£©
B½â£ºÓÉÌâÉèµÃ
an+1
bn+1
=
32
02
an
bn
£¬ÉèA=
32
02
£¬ÔòM=A4£®£¨5·Ö£©
A2=
32
02
32
02
=
910
04
M=A4=£¨A2£©2=
910
04
910
04
=
81130
016
£®£¨10·Ö£©
C½â£º£¨1£©Ö±ÏßlÆÕͨ·½³ÌΪy=x-2£»
ÇúÏßCµÄÆÕͨ·½³ÌΪ
x2
4
+
y2
3
=1
£®£¨5·Ö£©
¡ßF1£¨-1£¬0£©£¬F2£¨1£¬0£©£¬
¡àµãF1µ½Ö±ÏßlµÄ¾àÀëd1=
|-1-0-2|
2
=
3
2
2
µãF2µ½Ö±ÏßlµÄ¾àÀëd2=
|1-0-2|
2
=
2
2
£¬
¡àd1+d2=2
2
£®£¨10·Ö£©
DÖ¤Ã÷£ºÒòΪx£¬y£¬z¶¼ÊÇΪÕýÊý£®ËùÒÔ
x
yz
+
y
zx
=
1
z
(
x
y
+
y
x
)¡Ý
2
z
£¬
ͬÀí¿ÉµÃ
y
zx
+
z
xy
¡Ý
2
x
£¬
z
xy
+
x
yz
¡Ý
2
y
£¬µ±ÇÒ½öµ±x=y=zʱ£¬ÒÔÉÏÈýʽµÈºÅ¶¼³ÉÁ¢£®
½«ÉÏÊöÈý¸ö²»µÈʽÁ½±ß·Ö±ðÏà¼Ó£¬²¢³ýÒÔ2£¬µÃ
x
yz
+
y
zx
+
z
xy
¡Ý
1
x
+
1
y
+
1
z
£®£¨10·Ö£©
µãÆÀ£º±¾Ì⿼²é¶þ½×¾ØÕó¡¢¼«×ø±ê·½³Ì¡¢Ö±ÏߵIJÎÊý·½³ÌºÍ²»µÈʽµÄÖ¤Ã÷£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⹫ʽµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸½¼ÓÌ⣺£¨Ñ¡×öÌ⣺ÔÚÏÂÃæA¡¢B¡¢C¡¢DËĸöСÌâÖÐÖ»ÄÜÑ¡×öÁ½Ì⣩
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬ÒÑÖªAB¡¢CDÊÇÔ²OµÄÁ½ÌõÏÒ£¬ÇÒABÊÇÏ߶ÎCDµÄ´¹Ö±Æ½·ÖÏߣ¬
ÒÑÖªAB=6£¬CD=2
5
£¬ÇóÏ߶ÎACµÄ³¤¶È£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¶þ½×¾ØÕóAÓÐÌØÕ÷Öµ¦Ë1=1¼°¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿e1=
1
1
ºÍÌØÕ÷Öµ¦Ë2=2¼°¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿e2=
1
0
£¬ÊÔÇó¾ØÕóA£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌÊÇ
y=sin¦È+1
x=cos¦È
£¨¦ÈÊDzÎÊý£©£¬ÈôÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬȡÓëÖ±½Ç×ø±êϵÖÐÏàͬµÄµ¥Î»³¤¶È£¬½¨Á¢¼«×ø±êϵ£¬ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖª¹ØÓÚxµÄ²»µÈʽ|ax-1|+|ax-a|¡Ý1£¨a£¾0£©£®
£¨1£©µ±a=1ʱ£¬Çó´Ë²»µÈʽµÄ½â¼¯£»
£¨2£©Èô´Ë²»µÈʽµÄ½â¼¯ÎªR£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011Äê½­ËÕÊ¡¸ß¿¼Êýѧ·ÂÕæѺÌâÊÔ¾í£¨01£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

¸½¼ÓÌ⣺£¨Ñ¡×öÌ⣺ÔÚÏÂÃæA¡¢B¡¢C¡¢DËĸöСÌâÖÐÖ»ÄÜÑ¡×öÁ½Ì⣩
A£®Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²
Èçͼ£¬ÒÑÖªAB¡¢CDÊÇÔ²OµÄÁ½ÌõÏÒ£¬ÇÒABÊÇÏ߶ÎCDµÄ´¹Ö±Æ½·ÖÏߣ¬
ÒÑÖªAB=6£¬CD=2£¬ÇóÏ߶ÎACµÄ³¤¶È£®
B£®Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»
ÒÑÖª¶þ½×¾ØÕóAÓÐÌØÕ÷Öµ¦Ë1=1¼°¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿ºÍÌØÕ÷Öµ¦Ë2=2¼°¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿£¬ÊÔÇó¾ØÕóA£®
C£®Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßCµÄ²ÎÊý·½³ÌÊÇ£¨¦ÈÊDzÎÊý£©£¬ÈôÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖᣬȡÓëÖ±½Ç×ø±êϵÖÐÏàͬµÄµ¥Î»³¤¶È£¬½¨Á¢¼«×ø±êϵ£¬ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£®
D£®Ñ¡ÐÞ4-5£º²»µÈʽѡ½²
ÒÑÖª¹ØÓÚxµÄ²»µÈʽ|ax-1|+|ax-a|¡Ý1£¨a£¾0£©£®
£¨1£©µ±a=1ʱ£¬Çó´Ë²»µÈʽµÄ½â¼¯£»
£¨2£©Èô´Ë²»µÈʽµÄ½â¼¯ÎªR£¬ÇóʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010ÄêÉÂÎ÷Ê¡Î÷°²ÊÐÌúÒ»Öи߶þÏÂѧÆÚÆÚÖп¼ÊÔÊýѧ£¨ÎÄ£© ÌâÐÍ£º½â´ðÌâ

(¸½¼ÓÌâ)±¾ÌâÂú·Ö20·Ö
Èçͼ£¬ÒÑÖªÅ×ÎïÏßÓëÔ²ÏཻÓÚA¡¢B¡¢C¡¢DËĸöµã¡£

£¨¢ñ£©ÇórµÄÈ¡Öµ·¶Î§  £¨¢ò£©µ±ËıßÐÎABCDµÄÃæ»ý×î´óʱ£¬Çó¶Ô½ÇÏßAC¡¢BDµÄ½»µãPµÄ×ø±ê¡£

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸