精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=x+$\frac{m}{x}$,且f(1)=5.
(1)判断函数f(x)在(2,+∞)上的单调性,并用单调性定义证明你的结论.
(2)若f(x)≥a对于x∈[4,+∞)恒成立,求实数a的取值范围.

分析 (1)由f(1)=1+m=5,得m=4,从而f′(x)=1-$\frac{4}{{x}^{2}}$,进而函数f(x)在(2,+∞)上单调递增,利用定义法能证明函数f(x)在(2,+∞)上是单调递增函数;
(2)由f′(x)=1-$\frac{4}{{x}^{2}}$,得函数f(x)在[4,+∞)上单调递增,从而x∈[4,+∞)时,f(x)≥f(4)=4+$\frac{4}{4}$=5,由此能求出实数a的取值范围.

解答 解:(1)∵f(x)=x+$\frac{m}{x}$,且f(1)=5,
∴f(1)=1+m=5,解得m=4,
∴f(x)=x+$\frac{4}{x}$,∴f′(x)=1-$\frac{4}{{x}^{2}}$,
x∈(2,+∞)时,f′(x)>0,
∴函数f(x)在(2,+∞)上单调递增.
证明:在(2,+∞)上任取x1,x2,令x1<x2
f(x2)-f(x1)=(${x}_{2}+\frac{4}{{x}_{2}}$)-(${x}_{1}+\frac{4}{{x}_{1}}$)
=(x2-x1)+$\frac{4}{{x}_{2}}-\frac{4}{{x}_{1}}$)
=(x2-x1)+$\frac{4}{{x}_{1}{x}_{2}}$(x1-x2
=(1-$\frac{4}{{x}_{1}{x}_{2}}$)(x2-x1)>0,
∴函数f(x)在(2,+∞)上是单调递增函数.
(2)∵f′(x)=1-$\frac{4}{{x}^{2}}$,
x∈[4,+∞)时,f′(x)>0,
∴函数f(x)在[4,+∞)上单调递增,
∴x∈[4,+∞)时,f(x)≥f(4)=4+$\frac{4}{4}$=5,
∵f(x)≥a对于x∈[4,+∞)恒成立,
∴实数a的取值范围是(-∞,5].

点评 本题考查函数的单调性质的判断与证明,考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.sin50°cos20°-sin40°cos70°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.证明:1-$\frac{1}{x+1}$≤ln(x+1)≤x,其中x>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=lnx-x+1
(1)求函数f(x)的单调区间;
(2)求函数f(x)在区间$[{\frac{1}{2},2}]$上的极值及最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.为了考察甲乙两种小麦的长势,分别从中抽取10株苗,测得苗高如下:
12131415101613111511
111617141319681016
(1)画出两种小麦的茎叶图,
(2)写出甲种子的众数和中位数
(3)试运用所学数学知识说明哪种小麦长得比较整齐?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x(x∈R).
(Ⅰ)若函数y=f(x)在(0,+∞)上为增函数,求a的取值范围;
(Ⅱ)若a=1,当x>1时,求证:f(x)>x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如果集合P={x|x>-1},那么(  )
A.0⊆PB.{0}∈PC.∅∈PD.{0}⊆P

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.阅读下列命题:
①若点P(a,2a) (a≠0)为角α终边上一点,则sin α=$\frac{2\sqrt{5}}{5}$;
②同时满足sin α=$\frac{1}{2}$,cos α=$\frac{\sqrt{3}}{2}$的角有且只有一个;
③设tan α=$\frac{1}{2}$且π<α<$\frac{3π}{2}$,则sin α=-$\frac{\sqrt{5}}{5}$;
④函数y=sin($\frac{2}{3}$x+$\frac{π}{2}$)是偶函数
其中正确命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知圆C的极坐标方程为ρ2+2$\sqrt{2}$ρsin(θ-$\frac{π}{4}}$)-4=0,则圆C的半径为$\sqrt{6}$.

查看答案和解析>>

同步练习册答案