设,已知函数的定义域是,值域是,若函数
g(x)=2︱x-1︱+m+1有唯一的零点,则( )
A.2 | B. | C.1 | D.0 |
C
解析考点:函数零点的判定定理;对数函数的定义域.
专题:计算题.
分析:由关于x的方程2|x-1|+m+1=0有唯一的实数解,我们易得m的值,然后根据函数f(x)=log2(-|x|+4)的定义域是[m,n],值域是[0,2],结合函数f(x)=log2(-|x|+4)的性质,可求出n的值,进而得到答案.
解答:解:∵f(x)=log2(-|x|+4)的值域是[0,2],
∴(-|x|+4)∈[1,4]
∴-|x|∈[-3,0]
∴|x|∈[0,3]…①
若若关于x的方程2|x-1|+m+1=0有唯一的实数解
则m=-2
又由函数f(x)=log2(-|x|+4)的定义域是[m,n],
结合①可得n=3
即:m+n=1
故选C
点评:本题考查的知识点是根的存在性及根的个数的判断,对数函数的定义域及对数函数的值域,其中利用关于x的方程2|1-x|+m+1=0有唯一的实数解,变形得到关于x的方程2|1-x|+1=-m有唯一的实数解,即-m为函数y=2|1-x|+1的最值,是解答本题的关键.
科目:高中数学 来源: 题型:单选题
已知函数f(x)由下表定义:
x | -2 | 2 | 1 | 3 | 4 |
f(x) | 0 | 1 | 3 | 4 | 5 |
A.3 | B.5 | C.?2 | D.1 |
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
设函数f(x)=x|x|+bx+c,给出下列四个命题:
①c=0时,f(x)是奇函数 ②b=0,c>0时,方程f(x)=0只有一个实根
③f(x)的图象关于(0,c)对称 ④方程f(x)=0至多两个实根
其中正确的命题是( )
A.①④ | B.①③ | C.①②③ | D.①②④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com