精英家教网 > 高中数学 > 题目详情
用简单随机抽样方法从含有64个个体的总体中,抽取一个容量为m的样本,已知某一个体a在整个抽样过程中被抽到的概率是
1
8
,则m=(  )
分析:根据每个个体被抽到的概率都是相等的,都等于
1
8
,故样本容量m等于总体数量乘以每个个体被抽到的概率.
解答:解:由题意可得,每个个体被抽到的概率都是相等的,都等于
1
8
,故样本容量m=64×
1
8
=8,
故选C.
点评:本题主要考查等可能事件的概率,简单随机抽样的特征,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.
(1)求该总体的平均数;
(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
是否需要志愿       性别
需要 40 30
不需要 160 270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提供更好的调查方法来估计该地区老年人中,需要志愿帮助的老年人的比例?说明理由.附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(k2>k) 0.0 0.010 0.001
k 3.841 6.635 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校5名学生进行问卷调查,5人得分情况如下:5,6,7,8,9.把这5名学生的得分看成一个总体.
(1)求该总体的平均数;
(2)用简单随机抽样方法从5名学生中抽取2名,他们的得分组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
                    性别
是否需要志愿者    
需要 40  30
不需要 160  270
为了检验该地区的老年人需要志愿者提供帮助是否与性别有关系,根据表中数据,得到Χ2≈9.967,所以断定该地区的老年人需要志愿者提供帮助与性别有关系,这种判断出错的 可能性为(  )
参考数据:
P(Χ2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如表:
性    别

是否需要志愿者
需要 40 30
不需要 160 270
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
算得,K2=
500×(40×270-30×160)2
200×300×70×430
≈9.967

附表:
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
参照附表,得到的正确结论是(  )
A、在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别有关”
B、在犯错误的概率不超过0.1%的前提下,认为“需要志愿者提供帮助与性别无关”
C、有99%以上的把握认为“需要志愿者提供帮助与性别有关”
D、有99%以上的把握认为“需要志愿者提供帮助与性别无关”

查看答案和解析>>

同步练习册答案